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In 1983 Gustavus J. Simmons gave a talk titled The Subliminal Channel during
the CRYPTO 83 meeting. This paper would unofficially start the systematic study of
modern steganography, the study of methods used to conceal the existence of mes-
sages. Somewhat similar to cryptography, it has gained unprecedented attention ever
since USA Today and The New York Times reported that al-Qaeda and other groups are
increasingly relying on steganographic techniques to assist them in plotting their at-
tacks (“Terrorist groups hide behind Web encryption,” USA Today, June 19, 2001, and
“Veiled messages of terror lurk into cyberspace,” The New York Times, October 30,
2001).

Simmons began his landmark talk by describing a situation that has since become
the model for communication protocols. In the problem, two accomplices in a crime,
say Alice and Bob,1 are arrested and placed in separate cells. The warden, knowing
that the prisoners want to communicate with each other to plan an escape, but like-
wise hoping to gain some insight into the minds of the prisoners, will allow them to
communicate with each other provided he can monitor the contents of their commu-
nications. However, the prisoners will only communicate, taking a risk of deception,
if they are allowed to authenticate their messages to prevent the warden from sending
fraudulent messages. Hence, in order to deceive the warden, Alice and Bob will have
to establish a “subliminal channel,” that is, a way of sending secret information within
the limitations imposed on them. The solution of this problem, known as the prisoners’
problem, is the cornerstone of modern steganography.

Authentication without secrecy
Before we realize the subliminal channel, it is important to consider the case when
the prisoners simply communicate without trying to exchange secret information, also
known as the authentication without secrecy channel.

Authentication is simply the process by which Alice introduces prearranged redun-
dant information into a message, which serves as a guarantee to Bob that the message
is genuine. Conversely, the absence of such information implies that the communi-

1It is historically relevant to note that although many people attribute the “Alice and Bob” naming convention
for describing communication exchanges to Simmons, it was Rivest, Shamir, and Adleman who coined the term
in 1978. Their landmark paper, A Mathematical Method for Obtaining Digital Signatures and Public Key Cryp-
tosystems, introduced the mathematical theory behind the algorithm that even today provides the best security for
encrypting messages via public key: the famous RSA algorithm.
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cation is not genuine. Needless to say, the warden must allow Alice to encrypt the
authentication information, lest the warden just strip off the authentication informa-
tion and append it to another message. Authentic messages may be required to end in
a minimum number of zeroes or in a particular suffix, as is the common practice in
military authentication systems. Generally, “the message along with the authenticat-
ing information is block encrypted into a cipher using either a single key or a two key
cryptoalgorithm” [2]. Provided the cryptoalgorithm is adequately secure, the probabil-
ity P(A) of the warden successfully choosing a cipher that will be accepted by Bob
as genuine is related to the information content Hr of the redundant authenticating
information. If the information content is, say, 3-bit long, then since for each bit we
have two options, the probability of success is 2−3. Hence, if it is Hr -long, P(A) will
optimally be 2−Hr .

The warden corroborates that nothing has been concealed in the message by de-
crypting the cipher. If Alice uses a single-key cryptoalgorithm for encryption, then she
must provide the warden with an encryption/decryption key after the exchange takes
place; if a two-key system is used, then she gives him a decryption key in advance. For
single-key cryptographic systems, the warden must be willing to bear the risk of allow-
ing them to communicate prior to his knowing of the contents. However, this should
not be a major concern since if he does not receive the decryption key corresponding to
the cipher exchange as agreed, he can punish the inmates, say by not allowing further
communication between them. However, if the message is long enough, the warden
might face an unacceptable level of risk of covert communication. If the warden ar-
gues that to avoid bearing this risk he prefers to have the key before hand, Alice will
argue that then he would have the unacceptable advantage of being able to forge mes-
sages. This problem is solved using a two-key cryptosystem, since this removes the
need for even a temporary “trust” by either party since the warden “can have the de-
cryption key in his possession prior to any exchange of messages, and hence have the
ability to verify the message content prior to forwarding the cipher” [2]. In contrast,
since the warden cannot infer the unknown encryption key, Alice is confident that he
cannot improve his guessing odds of choosing an acceptable cipher. Actual authentica-
tion is frequently much more complex than this simplified description suggests, but as
with almost all mathematics, simplified problems often give insight into more complex
ones.

The essential points to an authentication without secrecy channel are that

a) Bob authenticates a message through the presence of Hr bits of redundant—yet
expected—information in the decrypted cipher, and

b) the warden verifies that nothing has been concealed by decrypting the ciphers
and verifying that the resulting message is precisely what he expected based on
his foreknowledge of the message.

Although there are operational differences for the warden depending on whether a
one- or two-key system is used, namely, that with the former he can check for con-
cealed information prior to the information exchange, and afterwards with the latter.
“However this does not alter the way in which he satisfies himself that nothing is
concealed—namely, that the cipher decrypts to the expected message” [2].

The subliminal channel realized
If Alice wants to communicate Hm bits of information with Hr bits of authentication,
then a total of Hm + Hr bits must be sent. Here Simmons conceives the remarkably
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simple, yet extremely powerful notion of a subliminal channel. Alice might be willing
to give up some of her ability to authenticate and use the resulting information capacity,
say Hs bits, to communicate secretly. Needless to say, the warden is unaware of this
additional risk Alice is taking. For example, suppose the warden tries to deceive Bob
sufficiently many times, and that he is told each time whether he succeeded or not,
then he would eventually find that his probability of success was 2−(Hr −Hs ) rather than
2−Hr , as would be the case for the authentication channel agreed to in advance by the
warden and Alice.

Let us illustrate these notions with the smallest single key example possible. Let
Hm = Hs = Hr − Hs = 1, as in Figure 1. Notice that the message consists of a single
bit of information, like the outcome of a fair-coin toss, and two bits allocated for au-
thentication, out of which one is subverted for a subliminal channel. Notice also that
the original authentication part has a probability of deception of 2−Hr = 1

4 , whereas
now the probability of deception is 2−Hr = 1

2 . This is the risk Alice is willing to take,
again, mainly because the warden is not aware of this move and, more importantly,
because she has a need to communicate covertly.

Hm HsHr 

Figure 1. 3-bit signal with a 1-bit subliminal channel

For the first case, authentication without secrecy, our encoding rule relating the
outcome of a fair-coin toss to three bit messages will be Heads if the number (encoded
message) has even parity and Tails if odd. In other words, when the outcome is Heads,
the warden will only allow even parity exchanges, where parity refers to whether the
sum of the digits of the binary number representing the message is even or odd, as
illustrated in Figure 2.

100

110

000 Heads

Tails
111

001

011

101

010

Figure 2.

In reality, what the warden and Alice have agreed to is a key list of the message
space by keys such as the one tabulated in Figure 3. However, what the warden does
not know is that, before they were apprehended, Alice and Bob randomly selected one
of these keys.
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There are two ways the warden might attempt to deceive Alice:

a) before the critical coin toss occurs, he could deliver a message of his own choice,
b) after the coin toss has occurred and Alice gives to the warden a message to

communicate its outcome, the warden could substitute another message (of the
opposite parity).

Heads Tails

1 000 100
2 000 010
3 000 001
4 000 111
5 011 100
6 011 010
7 011 001
8 011 111
9 101 100

10 101 010
11 101 001
12 101 111
13 110 100
14 110 010
15 110 001
16 110 111

Figure 3. Keys for a 1-bit channel and a 2-bit authentication without secrecy

Notice that even in the most general scheme, the warden has only these two types
of deceit available: impersonation and substitution.

If the sixteen keys are equally likely to occur, then the warden’s probability of
successful impersonation is just the probability that the message he chooses appears
in secret key, in this case, 4

16 = 1
4 . Alternatively, if he waits for the coin toss to occur,

whichever message he is given lies in exactly four keys, corresponding to each of the
messages of opposite parity. In this case, his probability of successful substitution is
just the probability that he gets the unique message of opposite parity in the secret key,
which again is 1

4 . Hence, regardless of whether the warden attempts impersonation or
substitution, his probability of success is 1

4 .
Let us now consider a one-bit subliminal channel, where Alice and Bob select a

secret key, not from the list of sixteen that the warden believes they are using, but
rather from among the eight keys shown in Figure 4.

Each key in this list includes the labels of four corners from Figure 2 and each
message is in precisely four of the keys. For example, the message 000 is in keys 1, 2,
3, and 4. The important thing to note about the entries in Figure 4 is that the middle
bit in the eight entries in any column is the same as the subliminal message heading
the column and that there are columns of even and of odd parity messages headed by
both a 0 and by a 1. To communicate a subliminal bit, Alice chooses in the key row
corresponding to the secret key she and Bob have chosen the even or odd message
(depending on the outcome of the coin toss) that has the desired middle bit.

Given that Bob will now accept any of four different messages as genuine, two of
odd parity and two of even parity, the warden’s probability of successful impersonation
is 4

8 = 1
2 . Likewise, if the warden waits to see a message sent by Alice, his probability
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Subliminal Message

0 1 1 0

1 000 011 111 100
2 000 011 010 001
3 000 110 010 100
4 000 110 111 001
5 101 110 111 100
6 101 110 010 001
7 101 011 010 100
8 101 011 111 001

Figure 4. Keys for a 1-bit overt channel, a 1-bit subliminal channel and a 1-bit authentication
without secrecy channel

of successfully substituting a message of opposite parity to misinform Bob of the out-
come of the coin toss will also be 1

2 since the observed message appears in four of the
keys, two of which contain each of the messages of opposite parity. Were he to make
sufficiently many attempts at deception with this scheme, with an unrealistic “success”
feedback on each attempt, he could quickly notice that something strange is happening
since the estimate of his probability of success converges to 1

2 rather than 1
4 . However,

in actual applications this is not a problem since the authentication part is chosen to
be small enough so that the probability of success is very small, making it practically
impossible to estimate it by testing the channel. Furthermore, our simplified model
does not provide the essential capability of key changes with successive messages, an
essential property in steganography if the warden is to be denied the option of simply
substituting an old message from a previous exchange.

As deceptively simple as these ideas might seem, they could have a catastrophic
impact on treaty verification and on the national security of a country. In fact, as
Burmester et al. [1] state, “The second Strategic Arms Limitation Treaty (SALT II)
between the former USSR and the USA allowed both nations to authenticate their
messages. While it was not possible to hide covert (embedded) data in the messages
that were standardized (and could be controlled by the other nation), this was not the
case with the authenticators. The capacity of this channel was enough to reveal which
silos were loaded with nuclear missiles and which were not. This information would
have been crucial to whichever power contemplated a first strike.”
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