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1. Introduction, motivation, and context

In this note we resolve three conjectures that directly or indirectly
relate to tensor products of semilattices. All three can be resolved es-
sentially by the same device. Although the conjectures concern finite
lattices, in order to best understand this device it is preferable to con-
sider lattices without regard to cardinality. In this section, we introduce
the ideas that unite the three conjectures and the related background.
This section is primarily intended for readers familiar with Priestley du-
ality, but for readers without this background we also present definitions
and examples. For notation or definitions not defined here, see §2, [3], or
[5].

The first conjecture pertains to function lattices, so we define these
first, along with two important topologies. These concepts are included
so that a general reader will have some idea of where the results sit within
the broader framework of the field, and so that the main results of this
paper are not viewed merely as disconnected statements.

Let L and P be posets. (Generally, L is a lattice or semilattice.)
Let LP denote the poset of order-preserving maps from P to L, where as
usual we order the functions pointwise:

f 6 g if f(p) 6 g(p) for all p ∈ P.

Example. Let P = 2 = {0, 1} and let L = 3 = {0, 1, 2}. Then 32 is the
set of pairs (a, b) where a, b ∈ 3 and a 6 b:

Figure 1.1. The poset 3
2

If P is an antichain, then LP is just the usual direct product of |P | copies
of L.

By Lσ, on the other hand, we mean the poset of ideals of L. A
non-empty subset I ⊆ L is an ideal if

(1) I is a down-set;
(2) a ∨ b ∈ I for all a, b ∈ I.
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(If L is a Boolean algebra, then under the isomorphism between the
categories of Boolean algebras and Boolean rings, I is a lattice ideal if
and only if I is a ring ideal [15, §11].) For this definition, we need L to
at least be a ∨-semilattice; for more general posets, an ideal is a directed
down-set. See the diagram of a ∨-semilattice S and its ideal lattice in
Fig. 1.2, consisting of the chain N and three elements x, y, z greater than
each natural number such that x, z < y.

Figure 1.2. The ∨-semilattice S (which is not a lattice) and its ideal lattice Sσ

If P and Q are partially ordered topological spaces, let QP
τ denote

the set of all continuous order-preserving functions from P to Q, where Q
has topology τ . (If τ is absent, we assume Q has the discrete topology.)

It is well known that every member L of the category D of bounded
distributive lattices is isomorphic to 2P , where P belongs to the category
of Priestley spaces , compact, totally order-disconnected ordered spaces +
continuous order-preserving maps. (A partially ordered topological space
P is totally order-disconnected if, whenever p 66 q in P , there exists a
clopen up-set U such that p ∈ U but q /∈ U .) Thus L ∼= D(P ), the lattice
of clopen up-sets of P , and P ∼= P (L), the poset of prime filters of L
with the topology generated by the following subbasis [18]:

{

{F ∈ P (L) | a ∈ F}, {F ∈ P (L) | a /∈ F}
∣

∣ a ∈ L
}

.

Recall that an element k in a complete lattice A is compact if, for
all T ⊆ A such that k 6

∨

T , there exists a finite subset S ⊆ T such that
k 6

∨

S. The complete lattice A is algebraic if every element is a join
of compact elements. (Examples include the lattice of subgroups of a
group, the compact subgroups being the finitely-generated ones, and the
lattice of open sets of a topological space for which the compact opens
form a basis.) Every algebraic lattice A can be represented as Sσ for
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some ∨-semilattice S with least element 0. (Take S to be the set κ(A) of
compact elements of A.) Two interesting topologies are the Scott topology
Σ, generated by the basis

{↑ k | k ∈ κ(A)}

and the Lawson topology Λ, generated by the subbasis
Σ ∪ {A\ ↑ k | k ∈ κ(A)}.

Every algebraic lattice with the Lawson topology is a Priestley space.
(Algebraic lattices are the simplest examples of the continuous lattices
invented by Dana Scott at Oxford and used in the semantics of program-
ming languages [10].)

Note that if L, M ∈ D, with P = P (L) and Q = P (M), then

MP ∼= LQ ∼= D(P × Q) ∼= L
∐

M,

the coproduct of L and M in D.

In 1968, E. T. Schmidt introduced the M3[D] construction (see [13]
and the references in [21] for its significance). Although initially defined
in universal algebraic terms, it turns out that M3[D] (where D ∈ D and
M3 is the five-element non-distributive modular lattice) is isomorphic to

M
P (D)
3 . Therefore M [D] is defined in the literature to be MP (D) for any

lattice M and any D ∈ D. We have the

Proposition (E. T. Schmidt). Let D ∈ D. Let L be the poset of all
(x, y, z) ∈ D3 such that x ∧ y = y ∧ z = z ∧ x. Then L ∼= M3[D].

As M3 is a simple, complemented modular lattice with 3 atoms,
this proposition led to Schmidt’s posing the following

Problem (E. T. Schmidt [21], 1974). Is it possible to give a similar
characterization for M [D] if M is a finite simple complemented modular
lattice?

and the following

Conjecture (E. T. Schmidt [21], 1974). Let D ∈ D. Let M be a finite
simple complemented modular lattice with n atoms p1, . . . , pn. Let L be
the set of all n-tuples (x1, . . . , xn) ∈ Dn such that, if pj 6 pk∨pl (pj, pk, pl

all distinct), then xj ∧ xk = xk ∧ xl = xl ∧ xj.
Then L ∼= M [D].

We prove this conjecture below (Prop. 3.3).
In [19, §1], describing the M3[D] construction and Schmidt’s propo-

sition in the case where D is finite, Quackenbush wrote, “What is behind
this curious duality in representing this modular lattice?”
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An answer appeared in [8, Cor. 3.7]. (Cf. [14, §§2.3 and 3.2].) We
summarize its conclusions below. In the theorem, we view our semilat-
tices as commutative monoids with idempotent multiplication, so that
we may consider the poset Slat(A, B) of semilattice homomorphisms
preserving the identity element, even if A is a ∨-semilattice and B a ∧-
semilattice. (Note that the only part of the theorem we will actually use
is the last; but the “duality” is most evident from the first, so we include
it.)

Theorem (see [8]). Let S be a ∨-semilattice with 0 and let T ∈ D. View
(T,∧, 1T ) and (T σ,∩, T ) as ∧-semilattices with 1. Then

(Sσ)
P (T )
Σ

∼= Slat(S, T σ)

(Sσ)
P (T )
Λ

∼= Slat(S, T )

(Sσ)P (T ) ∼= Slatfin(S, T )

where Slatfin(S, T ) is the set of maps in Slat(S, T ) with finite images.

(Ultimately this theorem is related to considering when the isomor-
phism

(LP )σ ∼= (Lσ)P .

holds. That is, when is the ideal poset of a power the power of an ideal
poset. See [6], [9], [16].)

We will see that this theorem is intimately related to tensor prod-
ucts of semilattices: If S is a ∨-semilattice with 0, then

Slat(S, 2) ∼= (Sσ)∂,

the dual of the poset of ideals. Therefore, using the defining property of
the tensor product S ⊗T of ∨-semilattices with 0 (see the end of §2), we
have

(S ⊗ T )σ∂ ∼= Slat(S ⊗ T, 2) ∼= Slat
(

S,Slat(T, 2)
)

,
or

Slat(S, T σ∂)∂ ∼= (S ⊗ T )σ,

If S and T are finite,

S ⊗ T ∼=
(

Slat(S, T ∂)
)∂

.

(See [1].)
One could ask what combinatorial properties are inherited by the

lattice S ⊗T when S and T are finite lattices. Two important candidate
properties are semimodularity and supersolvability (see, for instance, [4],
[22]). In 1985, Quackenbush made the following
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Conjecture (Quackenbush [19], 1985). Let S be a finite modular lattice
not having M4 as a sublattice. Let T be a finite modular lattice. Then
S ⊗ T is semimodular.

We refute this conjecture below (Prop. 4.3).
The notion of supersolvability was introduced by R. P. Stanley in

1972.

Conjecture (Quackenbush [19], 1985). If B is a finite modular lattice,
then M3 ⊗ B is supersolvable if and only if B is distributive.

We prove this conjecture below (Prop. 4.7).

2. Definitions and basic results

A general reference is [5]. Let P be a poset.
Let P ∂ denote the dual of P , where x 6 y in P ∂ if and only if x > y

in P . Denote the least element of P by 0P or 0, if it exists; denote the
greatest element of P by 1P or 1, if it exists. A poset with 0 and 1 is
bounded . An element y covers an element x (denoted x⋖ y) if x < y and
there is no z ∈ P such that x < z < y; we say x is a lower cover of y and
y is an upper cover of x. An element in a lattice L with a unique lower
cover is join-irreducible; the set of all such is denoted J (L). If P has a
0, an atom is an upper cover of 0; if P has a 1, a co-atom is a lower cover
of 1. If x 6 y, then [x, y] denotes the interval {z ∈ P | x 6 z 6 y}. For
p ∈ P , ↑ p = {q ∈ P | p 6 q}. An up-set is a subset U ⊆ P such that
↑ u ⊆ U for all u ∈ U .

A chain is a totally ordered poset (or subset of a poset). The length
of a non-empty chain C is |C|−1; the length of a non-empty poset is the
largest length of a chain.

A non-trivial lattice is simple if the only homomorphic images are
itself and 1. A lattice L is distributive if, for all x, y, z ∈ L,

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z).

A lattice L is modular if, for all x, y, z ∈ L with x 6 z,
x ∨ (y ∧ z) = (x ∨ y) ∧ z.

A lattice is modular if and only if N5 is not a sublattice; a lattice is
distributive if and only if neither M3 nor N5 is a sublattice [5, 4.10]. The
lattice consisting solely of 0, 1, and n atoms is denoted Mn.
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Figure 2.1. The lattices N5, M3, and M4

A lattice L of finite length is (upper) semimodular if, for all x, y ∈ L,
x ∧ y ⋖ x implies y ⋖ x ∨ y; dually we define lower semimodularity . A
lattice of finite length is modular if and only if it is upper and lower
semimodular (for instance [3, Chap. II, §8, Th. 16]). In a semimodular
or lower semimodular lattice of finite length, all maximal chains have the
same length (for instance [3, Chap. II, §8, Th. 14]).

A bounded lattice L is complemented if, for all x ∈ L, there exists
y ∈ L such that x ∧ y = 0 and x ∨ y = 1. A modular lattice of finite
length is complemented if and only if every join-irreducible is an atom
(see [17, Lemma 4.83]).

The subspace lattice of the Fano plane is a finite complemented
modular lattice of length 3 with 7 atoms (points) and 7 co-atoms (lines)
with the property that every co-atom covers exactly 3 atoms and every
atom is covered by exactly 3 co-atoms (see [17, §4.8]).

123 145 246 347 356 257 167

Figure 2.2. The lines of the Fano plane

A finite lattice is supersolvable if there is a maximal chain M such
that, for any chain C, the sublattice generated by C ∪M is distributive.
All maximal chains have the same length in a supersolvable lattice, and
every interval is supersolvable [22, Prop. 3.2(i)].

Let S, T , and U be ∨-semilattices with 0. Let Slat(S, T ) denote the
poset of all maps from S to T that preserve ∨ and 0. A map f : S×T → U
is a bimorphism if, for all s ∈ S and t ∈ T , the maps f(s,−) : T → U
and f(−, t) : S → U belong to Slat(T, U) and Slat(S, U) respectively.
A tensor product of S and T , S ⊗ T , is a ∨-semilattice with 0 together
with a bimorphism f : S × T → S ⊗ T such that

(1) f [S × T ] generates S ⊗ T , and
(2) if h : S × T → U is a bimorphism, then there exists g ∈

Slat(S ⊗ T, U) such that h = g ◦ f .
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3. The M [D] construction for a complemented mod-

ular lattice

In this section we prove the conjecture of E. T. Schmidt (Prop. 3.3;
see §1). The basic idea of the proof is elementary, but for the sake of
completeness we check all the details. (In response to a comment by a
reader of a previous version of this manuscript, we note that resorting
to the structure theorem for complemented modular lattices would not
shorten the proof.)

Lemma 3.1. Let S be a finite lattice and let T be an arbitrary lattice
with 0, both viewed as ∨-semilattices with 0. Let X := {

(

f(j)
)

j∈J (S)
|

f ∈ Slat(S, T )} and

Y :=

{

(tj)j∈J (S) ∈ T |J (S)|

∣

∣

∣

∣

for every j ∈ J (S) and every K ⊆ J (S)\{j},

j 6
∨

K implies tj 6
∨

k∈K

tk

}

.

Then
(1) X ∼= Slat(S, T ),
(2) X = Y .

Proof. Clearly (1) holds and X ⊆ Y . Let (tj)j∈J (S) ∈ Y . Define
f : S → T by

f(a) =
∨

j∈J (S)
j6a

tj

for all a ∈ S. Suppose a, b ∈ S. Then

f(a ∨ b) = f(a) ∨ f(b) ∨
∨

m∈J (S)
m6a∨b
m
a,b

tm.

Let N := {n ∈ J (S) | n 6 a or n 6 b}. If m ∈ J (S) and m 6 a ∨ b,
but m /∈ N , then m 6

∨

N , so tm 6
∨

n∈N tn = f(a) ∨ f(b). Hence
f(a ∨ b) = f(a) ∨ f(b), and f ∈ Slat(S, T ). Obviously, if j, k ∈ J (S)
and j < k, then tj 6 tk; so f(j) = tj for all j ∈ J (S). ♦

Verbindungssatz [7, Cor. 4.8]. Let M be a modular lattice of finite
length. Let p ∈ J (M); let a, b ∈ M be such that p 6 a ∨ b and p 
 a, b.
Then there exist a′, b′ ∈ J (M) such that a′ 6 a; b′ 6 b; and p 6 a′ ∨ b′.

♦
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(Note that in [7], the hypothesis p 
 a, b is omitted from the state-
ment, without which the statement is trivially false.)

Lemma 3.2. Let S, T , and Y be as in Lemma 3.1. Assume further that
S is a complemented modular lattice. Let (tj)j∈J (S) ∈ T |J (S)|. Then the
following are equivalent:

(1) (tj)j∈J (S) ∈ Y ,
(2) for all distinct j, k, l ∈ J (S),

j 6 k ∨ l implies tj ∨ tk = tk ∨ tl = tl ∨ tj.

Proof. First we prove that (1) implies (2), recalling that every j ∈ J (S)
is an atom (see §2). Let j, k, l ∈ J (S) be distinct and such that j 6 k∨ l.
By semimodularity, j ∨ k = k ∨ l = l ∨ j and hence, by the definition,
tj 6 tk ∨ tl, tk 6 tj ∨ tl, and tl 6 tj ∨ tk. Hence tj ∨ tk = tk ∨ tl = tl ∨ tj .

Now we show that (2) implies (1). We prove by induction on n that,
for all j ∈ J (S) and all K ⊆ J (S) \ {j} such that |K| = n, j 6

∨

K
implies tj 6

∨

k∈K tk.
This is vacuously true if n = 0 or 1. (For n = 1, recall that the

join-irreducibles form an antichain.) If n = 2– say K = {k, l} – then
j 6 k ∨ l implies tj 6 tk ∨ tl by (2).

Now assume n > 3. Let j ∈ J (S). Let K ⊆ J (S) \ {j} be such
that j 6

∨

K where |K| = n. We may assume that j 

∨

L for every
L ( K.

Take any a ∈ K and let b =
∨

(K \ {a}). By the Verbindungssatz,
there exist k, l ∈ J (S) such that k 6 a; l 6 b; and j 6 k ∨ l. Clearly
k = a. Also, j, k, and l are distinct; so by (2), tj ∨ tk = tk ∨ tl = tl ∨ tj .
By the induction hypothesis, tl 6

∨

i∈K\{k} ti so

tj 6
∨

i∈K

ti. ♦

Proposition 3.3. Let S be a finite complemented modular lattice with
exactly n distinct atoms p1, . . . , pn. Let T be a bounded distributive lattice.
Then S[T ] is isomorphic to the set of n-tuples (t1, . . . , tn) ∈ T n such that,
for all distinct j, k, l ∈ {1, . . . , n}, pj 6 pk ∨ pl implies tj ∧ tk = tk ∧ tl =
= tl ∧ tj.

Note. We do not need to insist, as Schmidt does, that S be simple. Also,
in E. T. Schmidt’s original conjecture [21], he does not explicitly state
that pj , pk, pl must be distinct, although this clearly must be specified.

Proof. By a corollary of the theorem from [8] cited in §1,

S[T ] = SP (T ) ∼= Slat(S, T ∂)∂.



10 J. D. Farley

Remember that here we are viewing Slat as picking out the ∨, 0-semi-
lattice maps, whereas in the aforementioned corollary Slat picks out
maps from a ∨, 0-semilattice to a ∧, 1-semilattice. The result follows
from Lemmas 3.1 and 3.2 by considering the (order) duals of the relevant
lattices. ♦

This solves the problem and proves the conjecture of E. T. Schmidt.

4. The semimodularity and supersolvability of some

semilattice tensor products

In this section we refute a conjecture and prove another conjecture
made by Quackenbush (Props. 4.3 and 4.7; see §1).

In Lemmas 4.1, 4.2, and Prop. 4.3, let S be the subspace lattice
of the Fano plane, with atoms (points) a1, a2, a3, a4, a5, a6, a7. Let the
atoms of M7 be labelled A, B, C, D, E, F, G. Let N ∼= Slat(S, M7).

Lemma 4.1. The lattice N is neither semimodular nor lower semimod-
ular.

Proof. We show that N has a maximal chain of length 6 and a maximal
chain of length at least 8, thus violating semimodularity. Let us assume
that {a1, a2, a3} is a line in the Fano plane. By Lemma 3.2, we may
assume that

N =
{

(t1, . . . , t7) ∈ (M7)
7 |if {aj , ak, al} is a line,

then tj ∨ tk = tk ∨ tl = tl ∨ tj
}

.

The following is a maximal chain in N : n0 = 0000000, n1 = 000AAAA,
n2 = 0AAAAAA, n3 = AAAAAAA, n4 = AAA1111, n5 = A111111,
n6 = 1111111. We have n0 ⋖ n1 since, if any two points go to 0, the
whole line must go to 0; n1 ⋖ n2 for the same reason; n2 ⋖ n3 is obvious;
n3 ⋖ n4 since if any two points go to A and the third point on the line
goes to A or 1, the whole line must go to A; n4 ⋖n5 for the same reason;
and n5 ⋖ n6 is obvious.

The following is also a chain in N :
0000000, ABCDEFG, ABCDEF1, ABCDE11,

ABCD111, ABC1111, AB11111, A111111, 1111111. ♦

Lemma 4.2. The lattice M4 is not a sublattice of S.

Proof. If it were, then (possibly considering the dual of S) at least two
of the atoms of M4 would be atoms of S, in which case, all four atoms
would be atoms of S. But no line contains four points. ♦
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Proposition 4.3. There exist a finite modular lattice S not having M4

as a sublattice and a finite modular lattice T such that S ⊗ T is not
semimodular.

Proof. Let T = M7 and use the fact that S ⊗ T ∼= Slat(S, T ∂)∂ (see §1)
as well as Lemmas 4.1 and 4.2. ♦

Lemma 4.4. Let S and T be finite lattices. Let x, y ∈ T be such that
x 6 y. Then

{

f ∈ Slat(S, T )
∣

∣f(a) ∈ [x, y] for all a ∈ S \ {0}
}

is an interval in the lattice Slat(S, T ) isomorphic to Slat(S, [x, y]).

Proof. For z ∈ T , let gz : S → T be defined for all s ∈ S by

gz(s) =

{

z if s > 0S,

0T if s = 0S.

Then gz ∈ Slat(S, T ). The interval in question is [gx, gy]. ♦

Lemma 4.5. Let k > 3. Then Slat(M3, Mk) is not supersolvable.

Proof. (Cf. [19, Prop. 19].) We use Lemma 3.2 and show that every atom
of Y has two comparable complements in some interval. The atoms of Y
are of two types:

AA0

BCA

where A, B, and C are distinct atoms of Mk. But {000, AA0, BCA, 1CA,
11A} is a sublattice isomorphic to N5, as is {000, BCA, AA0, AAA, 11A}
(Fig. 4.1). ♦

Figure 4.1. Sublattices of Y ∼= Slat(M3,Mk) isomorphic to N5

Lemma 4.6. Let T be a finite modular lattice that is not distributive.
Then there exist x, y ∈ T such that x 6 y and [x, y] ∼= Mk for some
k > 3.

Proof. See [2, Chap. IX, §1, Cor. 2] (note the typographical mistake in
the text); cf. [12, §2]. ♦
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Proposition 4.7. Let B be a finite modular lattice. Then the following
are equivalent:

(1) B is distributive,
(2) M3 ⊗ B is modular,
(3) M3 ⊗ B is supersolvable.

Note. The equivalence of (1) and (2) is [19, Lemma 8] (for B a gen-
eral bounded modular lattice). Also, supersolvability in the literature is
defined for finite lattices (or, at least, lattices of finite length). In the
conjecture of [19], this hypothesis was not explicitly stated, an oversight
confirmed by Quackenbush [20].

Proof. If B is distributive, then M3 ⊗ B ∼= MP
3 for some finite poset P

(see §1), so it is modular. If M3 ⊗B is modular, then it is supersolvable.
If M3 ⊗ B is supersolvable, but B is not distributive, then there exist
x, y ∈ B such that x 6 y and [x, y] ∼= Mk for some k > 3 (Lemma 4.6).
By Lemma 4.4,Slat(M3,Mk) is isomorphic to an interval in Slat(M3, B

∂),
so it is supersolvable. This contradicts Lemma 4.5. ♦

(A reader of a previous version of this manuscript has pointed out
that M3 can be replaced by any finite modular, non-distributive lattice.
This reader also made a conjecture which we have not considered, namely,
that if every simple complemented interval of M is isomorphic to either
M3 or 2, then M ⊗B is semimodular for every finite modular lattice B.)
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