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A distributive lattice L with 0 is finitary if every interval is finite. A function
f : N0 � N0 is a cover function for L if every element with n lower covers has f (n)
upper covers. In this paper, all finitary distributive lattices with non-decreasing
cover functions are characterized. A 1975 conjecture of Richard P. Stanley is
thereby settled. � 2000 Academic Press
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A. PRELIMINARIES

1. Stanley's Conjecture

Fibonacci numbers, aptly enough, are a recurring phenomenon in
mathematics; they even appear in lattice theory. Stanley has investigated
certain distributive lattices related to the Fibonacci numbers in [2].

He notes that many of these lattices have the following property: if two
elements have the same number (n) of immediate predecessors, then they
have the same number ( f (n)) of immediate successors. Hence one may
define a cover function f : N0 � N0 , where N0=[0, 1, 2, ...].

In his 1975 paper, Stanley conjectures that the only non-decreasing cover
functions are the constant functions and functions of the form f (n)=n+k
for some constant k. We settle this conjecture by characterizing all non-
decreasing cover functions and the corresponding lattices (Theorem 11.1).

In the rest of Part A we shall define our terms and state the conjecture
precisely (Section 3). Then we shall present background material more
directly related to the conjecture and give some basic examples.

In Part B we shall settle the conjecture by doing a case-by-case analysis
of all the possible non-decreasing cover functions.
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FIG. 2.1. A down-set Q of P.

2. General Definitions, Notation, and Basic Theory

For basic facts and notation, see [1, 3].
Let P be a poset. We denote the least element by 0P or 0 if it exists.
Let p, q # P. We say p is a lower cover of q and q is an upper cover of

p (denoted p<} q) if p<q and there is no r # P such that p<r<q. We
denote the set of lower covers of p by LC( p). An element is ( join-)
irreducible if it has a unique lower cover. Let Irr(P) denote the poset of
irreducibles of P.

A subset Q�P is a down-set (or order ideal ) if p # P, q # Q, and p�q
imply p # Q (Fig. 2.1).

The family of finite down-sets of P is denoted Of (P). For R�P,

a R=[ p # P | p�r for some r # R];

if R is a singleton [r], we simply write a r, and a
b

r denotes (ar)"[r]. (Note
that a R is a down-set.)

Let P and Q be posets. The disjoint sum of P and Q, P+Q, is the poset
with underlying set P _ Q such that p and q are incomparable for all p # P
and q # Q (Fig. 2.2). The ordinal sum of P and Q, P�Q, is the poset on
P _ Q such that p<q for all p # P and q # Q (Fig. 2.3).

If P has a greatest element and Q a least element, the coalesced ordinal
sum, Pg+Q, is the poset obtained by identifying these two elements
(Fig. 2.4).

The direct product P_Q is the set of pairs ( p, q) ordered coordinate-
wise: ( p, q)�( p$, q$) if p�p$ and q�q$ ( p, p$ # P, q, q$ # Q)��see Figs. 2.5a
and 2.5b.

An antichain is a poset in which distinct elements are incomparable; a
chain is a totally ordered set. For n # N0 , the n-element chain is denoted n
(Fig. 2.6).

FIG. 2.2. The disjoint sum.
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FIG. 2.3. The ordinal sum.

FIG. 2.4. The coalesced ordinal sum.

FIG. 2.5. (a) Direct products. (b) Direct products.
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FIG. 2.6. Chains and an antichain.

A lattice L is finitary if it has a 0 and a a is finite for all a # L. It is well
known that a finitary distributive lattice may be identified with Of (P) where
P=Irr L ([3, 3.4.3]).

If we do simply say that L=Of (P), then I<} J in L if and only if
I=J"[ j ] for a maximal element j # J (now viewed as a subposet of P).

For posets P and Q, Of (P+Q)$Of (P)_Of (Q), and, if P is finite,
Of (P�Q)$Of (P)g+Of (Q). In particular, Of (1�Q)$1�Of (Q). (See Figs.
2.7 and 2.8 and [1, Chap. 8].)

Let Y denote Young's lattice (a lattice of great interest to combinator-
ialists). It is the poset of sequences (a1 , a2 , ...) # N|

0 with finitely many
non-zero coordinates such that a1�a2� } } } . We will identify Young's
lattice with Of (N0_N0) (Fig. 2.9).

3. Definition of Cover Functions and Known Results

Let L be a finitary distributive lattice. A function f : N0 � N0 is a cover
function for L if every element with (exactly) n lower covers has (exactly)
f (n) upper covers. (The definition comes from [2, Sect. 3; 3, p. 157]; cf. the
definition of differential posets in [4].)

FIG. 2.7. The lattice of down-sets.
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FIG. 2.8. The lattice of down-sets.

The first three examples come from [2].

Example 3.1. For k # N, the constant function f (n)=k (n # N0) is a
cover function for Nk

0 (Figs. 3.1a and 3.1b).
[We note that f (n) could take any value for n>k.]

Example 3.2. For k # N, the function f (n)=k+n (n # N0) is a cover
function for Y k. (See Lemma 4.8.)

Example 3.3. For k # N0 , any function f : N0 � N0 with f (n)=k&n
(0�n�k) is a cover function for 2k (Fig. 3.2).

In fact, we have:

Proposition 3.4 [2, Sect. 3, Proposition 2]. If L is a finite distributive
latttice with a cover function, then L$2r for some r # N0 .

FIG. 2.9. An element of Young's lattice.
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FIG. 3.1. (a) Cover functions. (b) Cover functions.

Aside. It appears to us that there needs to be an additional step in the
proof of the statement that appears in [2]. For it proceeds by assuming
that P=Irr(L) has r maximal elements x1 , ..., xr , and that the down-set
I"[x1 , ..., xr] has s maximal elements. Then down-sets Ik=I _ [x1 , ..., xk]
are constructed for 1�k�r. ``Then each Ik is an order ideal of P, and the

FIG. 3.2. A cover function.
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FIG. 3.3. An illustration of the argument.

number of maximal elements of Ik is at most one more than the number
of maximal elements of Ik&1. Since I1 has �s maximal elements and Ir has
r maximal elements, some Ik has s maximal elements.''

The assumption seems to be that s�r. Figure 3.3, however, illustrates
the above set-up (sans the existence of a cover function) in which the
conclusion of the quoted statement does not hold.

We have constructed the following examples:

Example 3.5. For k�2, the function

k&n if 0�n<k,

f (n)={k if n=k,

V otherwise,

where n # N0 , is a cover function for g+�
i=1 2k (Fig. 3.4).

FIG. 3.4. A cover function.
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FIG. 3.5. Cover functions.

Example 3.6. For k�2, the function

1 if n=0,

f (n)={k if 1�n�k,

V otherwise,

where n # N0 , is a cover function for 1�Nk
0 (Fig. 3.5).

Example 3.7. The poset L=Y"[0Y] is still a finitary distributive
lattice [with Irr(L)$(N0_N0)"[(0, 0)]], and it has cover function

f (n)={2
n+1

if n=0,
if n�1,

where n # N0 .

Example 3.8. Another ``sporadic'' example is the lattice L=22�N,
which has cover function

2 if n=0,

f (n)={1 if 1�n�2,

V otherwise,

where n # N0 (Fig. 3.6).
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FIG. 3.6. A cover function.

Even though we have seen that a given lattice L may have more than
one cover function, any two lattices with the same cover function must be
isomorphic:

Proposition 3.9 [2, Sect. 3; 3, pp. 157, 180]. There is at most one
finitary distributive lattice with a given cover function (up to isomorphism).

In [2], Stanley states the following:

Conjecture (Stanley, [2]). ``We in fact conjecture that if L [a finitary
distributive lattice] has a ... non-decreasing cover function f (n) (i.e., f (i+1)
� f (i )), with f (0)>0, then f (n)=a or f (n)=n+a.''

In [2, Sect. 3], Stanley proves that no function of the form f (n)=an+b
is a cover function if |a|�2. He uses an interesting result.

Proposition 3.10 [2, Sect. 3; 3, pp. 157, 179�180]. Let L be a finitary
distributive lattice with finitely many elements of each rank. Let u(i, j )
(v(i, j )) be the number of elements of rank i with exactly j lower (upper)
covers.

Then for i� j�0,

:
�

k=0

u(i, k) \ k
j += :

�

k=0

v(i& j, k) \ k
j + .

Strictly speaking, because of the freedom we have in choosing some
cover functions (see Examples 3.1, 3.3, 3.5, 3.6, and 3.8), this conjecture is
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false. In light of Proposition 3.9 (and Examples 3.1�3.3), however, it is
clear that Stanley means the following:

Conjecture$. If L is a finitary distributive lattice with a non-decreasing
cover function, then L$Nk

0 or L$Y k for some k # N0 .

Examples 3.6 and 3.7 show that this conjecture, too, is false; yet it is
morally true. In Part B we prove the following (Theorem 11.1):

Theorem. If L is a finitary distributive lattice with a non-decreasing
cover function, then one of the following holds:

(1) L$Nk
0 (k�1);

(2) L$Y k (k�1);

(3) L$1�Nk
0 (k�2);

(4) L$Y"[0Y];

(5) L$1.

B. RESOLUTION OF STANLEY'S CONJECTURE

In Part B, L will denote a finitary distributive lattice with cover function
f : N0 � N0 . Let P=Irr(L) and let x1 , ..., xm be its set of minimal elements.
(It is clear that m= f (0).)

We identify L with Of (P).

4. Useful Lemmas

We will use the following key lemmas repeatedly; they mostly follow
from the characterization of the cover relation in Of (P) given in Section 2.

Lemma 4.1. Let M be a finitary distributive lattice and let N be the
finitary distributive lattice 1�M.

(1) If M has cover function g : N0 � N0 such that g(0)= g(1), define
a cover function h : N0 � N0 for N by

h(n)={ 1
g(n)

if n=0,
if n�1

(n # N0).
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(2) If N has a cover function h : N0 � N0 , define for M a cover
function g : N0 � N0 such that g(0)= g(1) by

g(n)={h(1)
h(n)

if n=0,
if n�1

(n # N0).

Lemma 4.2. Let n # N0 . An element I # Of (P) has (exactly) n lower
covers in L if and only if I has n maximal elements in P.

Lemma 4.3. If I=aA where A�P is an n-element antichain, then there
are (exactly) f (n) elements p # P"I such that LC( p)�I.

Lemma 4.4. Let q # P; let A=[ p # P"aq | LC( p)�a
b

q], and let B=
[ p # P"aq | LC( p)�aq ].

Then:

(1) A�B;

(2) for all r # P, r # B"A if and only if r # Irr(P) and q<} r.

Corollary 4.5. Assume that f (0)=1. Then P has a down-set Q
isomorphic to [0P]�� f (1)

i=1 N such that Q"[0P]�Irr(P) and every element
in Q"[0P] has a unique irreducible upper cover in P (namely, its upper cover
in Q).

Proof. Let y1 , ..., yf (1) be the upper covers of 0P in P. (Without loss of
generality, f (1)�1.) Let q= y1 in Lemma 4.4: Then A has f (1)&1
elements, namely, y2 , ..., yf (1) , and B has f (1) elements. Hence y1 has a
unique irreducible upper cover in P, y$1.

Similarly, if n�1 and y1<} y$1 <} } } } <} y (n)
1 where y (i+1)

1 is the unique
irreducible upper cover of y (i )

1 in P (0�i<n), let r= y (n)
1 in Lemma 4.4.

Since y (i )
1 is irreducible in P, [ y (i )

1 , y2 , ..., yf (1)] is an antichain (1�i�n).
Thus A=[ y2 , ..., yf (1)] has f (1)&1 elements and B has f (1) elements, so
y(n)

1 has a unique irreducible upper cover, y (n+1)
1 .

By induction, we construct a subposet with the desired properties. K

Corollary 4.6. If f (0)= f (1), then P has a down-set Q isomorphic to
� f (1)

i=1 N such that every element of Q has a unique irreducible upper cover in
P (namely, its upper cover in Q).

Proof. This corollary follows from Lemma 4.1 and Corollary 4.5. K

Lemma 4.7. If f (0)�2, then f (0)&1� f (1)� f (0)+1.
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FIG. 4.1. An impossible scenario ( f (0)=3, f (1)=5).

Proof. The first inequality holds since [x1] has, in L, at least the
f (0)&1 upper covers [x1 , xi] (2�i� f (0)).

Suppose for a contradiction that f (1)� f (0)+2. Let q=x1 in
Lemma 4.4. Then A=[x2 , ..., xf (0)] and x1 has exactly f (1)&( f (0)&1)=
f (1)& f (0)+1 irreducible upper covers in P, y1 , y2 , ..., yf (1)& f (0)+1 . (Note
that f (1)& f (0)+1�3.) Hence [x1 , x2] has at least 2[ f (1)& f (0)+1]+
( f (0)&2)=2 f (1)& f (0) upper covers in L, the first batch obtained from
the irreducible upper covers of x1 and x2 , the second batch being [x1 , x2 ,
xi] (3�i� f (0)). (So f (2)�2 f (1)& f (0).)

Now ay1 has at least ( f (0)&1)+( f (1)& f (0))= f (1)&1 upper covers
in L, namely, ay1 _ [xi] (2�i� f (0)) and ay1 _ ayj (2� j� f (1)&
f (0)+1). Let q= y1 in Lemma 4.4; then y1 has exactly 1 irreducible upper
cover in P, y$1 (Fig. 4.1).

Consider ay1 _ ay2 . Some of its upper covers in L are ay1 _ ay2 _ [xi]
(2�i� f (0)), ay1 _ ay2 _ ayj (3� j� f (1)& f (0)+1), ay$1 _ ay2 and
ay1 _ ay$2 ; these number ( f (0)&1)+[( f (1)& f (0)+1)&2]+2= f (1).
Hence there are exactly f (2)& f (1)� f (1)& f (0)�2 elements z # P such
that LC(z)=[ y1 , y2]��let z1 , z2 be two such (Fig. 4.2).

Then az1 has more than f (1) upper covers in L, namely, az1 _ [xi]
(2�i� f (0)), ayj _ az1 (3� j� f (1)& f (0)+1), ay$1 _ az1 , ay$2 _ az1 ,
and az1 _ az2 , a contradiction.

Hence f (1)� f (0)+1. K

Lemma 4.8. Let g: N0 � N0 be the function g(n)=n+1 (n # N0). Then
g is a cover function for Y.

Proof. See Lemma 5.3. K

FIG. 4.2. An impossible scenario ( f (0)=3, f (1)=5).
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5. f (0)=1; f (1)=2; f (2){2

Lemma 5.1. The poset P has a down-set Q isomorphic to the subposet

[(m, n) # N0_N0 | m=0 or n=0]

and every element of Q"[0P] has a unique irreducible upper cover in P.

Proof. The result follows from Corollary 4.5 and the fact that
f (1)=2. K

Lemma 5.2. Let Q be the set of Lemma 5.1. Then

(1) There is a unique y # P such that LC( y)=[(0, 1), (1, 0)];

(2) f (2)=3.

Proof. Let y1=(0, 1), y2=(1, 0), y$1=(0, 2), y$2=(2, 0). Then
ay1 _ ay2 has, in L, at least the upper covers ay$1 _ ay2 and ay1 _ ay$2 , so
f (2)�2. These are also the only upper covers in L that are subsets of Q.
Thus there exists y # P"Q such that LC( y)� a y1 _ ay2 ; hence LC( y)=
[ y1 , y2].

Suppose for a contradiction that f (2)>3. Then there exists z # P"Q
distinct from y such that LC(z)=[ y1 , y2] (Fig. 5.1).

Thus ay has more than f (1)=2 upper covers in L, namely, ay$1 _ ay,
ay$2 _ ay, and ay _ az, a contradiction.

Hence f (2)=3. K

For Lemmas 5.3 and 5.4, let the following situation hold: Fix a # N and
b # N0 . Let R be a down-set of P isomorphic to the following subposet of
N0 _N0 : [(m, n) # N0_N0 | m<a] _ [(a, n) # N0_N0 | n�b] _ [(m, n) #
N0 _N0 | n=0] (Fig. 5.2).

Lemma 5.3. Let I # Of (P) be a subset of R that does not contain
(a+1, 0) or both (a, b) and (a&1, b+1). Let k # N0 .

If I has k lower covers in L, then I has k+1 upper covers in L that are
subsets of R.

FIG. 5.1. An impossible scenario ( f (0)=1, f (1)=2, f (2)>3).
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FIG. 5.2. The subset R (a=2, b=1).

Demonstration. A finite down-set I of R can be represented by zig-zags
(Fig. 5.3).

Provided none of the ``valleys'' is [(a, b), (a&1, b), (a&1, b+1)], I has
upper covers in L obtained by squaring out the valleys and incrementing
the ends (Figs. 5.4a�c and 5.5a�d). K

Lemma 5.4. There exists y # P such that ay=[ y] _ a(a&1, b+1) _
a(a, b). Label this element (a, b+1). Then R _ [ y] is a down-set of P
isomorphic to the corresponding subposet of N0_N0 .

Proof. By Lemma 5.2(2), exactly f (2)=3 elements of

P"(a(a&1, b+1) _ a(a, b))

are such that their lower covers all lie in a(a&1, b+1) _ a(a, b). Exactly
two of these, (a+1, 0) and (0, b+2), lie in R. Let y # P"R be the third. Let
I=R & ay # Of (P).

FIG. 5.3. A representation of the down-set I.
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FIG. 5.4. (a)�(c) A representation of a lower cover of I in L.

Assume for a contradiction that I does not contain both of the elements
(a, b) and (a&1, b+1). By Lemma 5.3, I has k+1 upper covers in L that
are subsets of R, for some k�1. Clearly, for each of these upper covers A,
A _ [ y] is a different upper cover of ay in L. Since f (1)=2, k+1�2, so
that k=1; i.e., I=az for some z # R. Then I has more than f (1)=2 upper
covers in L, two that are subsets of R, and ay, a contradiction.

Thus ay contains both (a, b) and (a&1, b+1), so y covers both in P
and LC( y)=[(a&1, b+1), (a, b)]. K

Corollary 5.5. There is a down-set of P isomorphic to N0_N0 .

Proof. Lemma 5.1 provides us with the base of an induction (a=1,
b=0 in the set-up preceding Lemma 5.3). Use Lemma 5.4. K

Corollary 5.6. The following hold:

(1) P$N0_N0 ;
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FIG. 5.5. (a)�(d) A representation of an upper cover of I in L.

(2) L$Y;

(3) f (n)=n+1 for all n # N0 .

Proof. Let S be the down-set of Corollary 5.5, and assume for a con-
tradiction that P"S{<. Let y # P"S be minimal. By the same argument as
in the proof of Lemma 5.4 we get a contradiction.

The rest follows by definition and Lemma 4.8. K
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6. f (0)�2; f (1)= f (0)+1

Lemma 6.1. Let Q=Q1=[ p # P | ap & [x2 , ..., xf (0)]=<] . Then:

(1) Q is a down-set of P;

(2) Of (Q) is a finitary distributive lattice with cover function

g(n)= f (n)& f (0)+1 (n # N0).

Proof. Clearly Of (Q) is a down-set of Of (P). Let I # Of (Q) have n lower
covers in Of (Q) (and hence in L) for some n # N0 . Note that I _ [x i]
(2�i� f (0)) are upper covers of I in L, so f (n)� f (0)&1.

The other f (n)&( f (0)&1) upper covers of I in L must actually be sub-
sets of Q. That is, I has f (n)& f (0)+1 upper covers in the lattice Of (Q). K

Lemma 6.2. The inequality f (2)� f (0)+2 holds.

Proof. Let q=x1 in Lemma 4.4; then A=[x2 , ..., xf (0)], so x1 has
exactly 2 irreducible upper covers in P, y1 and y$1 . Similarly, x2 has 2
irreducible upper covers, y2 and y$2 .

Hence [x1 , x2] has, in L, at least the upper covers [x1 , x2 , xi]
(3�i� f (0)), ay1 _ [x2], ay$1 _ [x2], [x1] _ ay2 , and [x1] _ ay$2 . K

Corollary 6.3. The poset Q of Lemma 6.1 is isomorphic to N0_N0 .

Proof. By Lemmas 6.1(2) and 6.2, g(0)=1, g(1)=2, and g(2)�3. By
Corollary 5.6(1), Q$N0_N0 . K

Lemma 6.4. Define Q1 , ..., Qf (0) as in Lemma 6.1. Then P=� f (0)
i=1 Qi .

Proof. Let S=� f (0)
i=1 Qi . Clearly S=� f (0)

i=1 Qi .
Suppose, for a contradiction, that P"S{<; choose y # P"S minimal. Let

Ii=ay & Q i (i=1, ..., f (0)). There exist distinct j, k # [1, ..., f (0)] such that
Ij , Ik {<.

By Corollary 6.3, for 1�i� f (0), Qi $N0_N0 , and, by Lemma 4.8, Ii

has at least 1 upper cover in L that is a subset of Qi (at least 2 if i # [ j, k]).
Hence, I=� f (0)

i=1 Ii has at least f (0)&2+4= f (0)+2 upper covers in L
that are subsets of S, so ay has more than f (1)= f (0)+1 upper covers in
L, a contradiction. K

Corollary 6.5. The following hold:

(1) P$� f (0)
i=1 (N0_N0);

(2) L$Y f (0);

(3) f (n)=n+ f (0) for all n # N0 .
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Proof. Statements (1) and (2) follow from Corollary 6.3 and Lemma 6.4.
Let Q be the component containing x1 . For n # N0 , let I # Of (Q)�Of (P)

have n lower covers in Of (Q), hence in L. (Such an I exists.) By Lemma 4.8,
I has exactly n+1 upper covers in L that are subsets of Q, and also
the covers I _ [xi] (2�i� f (0)), for a total of (n+1)+( f (0)&1)=
f (0)+n. K

7. f (0)�3; f (1)= f (0)

In this section, let Q be the subset of Corollary 4.6; for 1�i� f (0), let
xi$ be the irreducible upper cover of xi .

Lemma 7.1. We have f (2)= f (0).

Proof. Now [x1 , x2] has at least f (0) upper covers in L, namely,
[x$1 , x2], [x1 , x$2], and [x1 , x2 , xi] (3�i� f (0)). Thus f (2)� f (0).

Assume for a contradiction that f (2)> f (0). Then there are exactly
f (2)& f (0) elements z # P such that LC(z)=[x1 , x2], y= y1 , ..., yf (2)& f (0)

(Fig. 7.1).
In fact, f (2)& f (0)=1. [For, otherwise, ay1 would have more than f (1)

upper covers in L, namely, ax$1 _ ay1 , x$2 _ ay1 , ay1 _ ay2 , and ay1 _ [xi]
(3�i� f (0)).]

Let y$ # P be the unique element such that LC( y$)=[x1 , x3] and
similarly choose y" for [x2 , x3] (Fig. 7.2).

Now [x3] _ ay has more than f (2)= f (0)+1 upper covers in L, namely,
[x$1 , x3] _ ay, [x$2 , x3] _ ay, ax$3 _ ay, ay _ ay$, ay _ ay", and [x3 , xi]
_ ay (4�i� f (0)), a contradiction. K

Lemma 7.2. For 0�n� f (0), f (n)= f (0).

FIG. 7.1. An impossible scenario ( f (0)=4, f (1)=4, f (2)=6).
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FIG. 7.2. An impossible scenario ( f (0)=4, f (1)=4, f (2)=5).

Proof. The case 0�n�2 is Lemma 7.1. Now assume 3�n� f (0) and
that f (k)= f (0) for 0�k<n.

Note that no element of P is above exactly k of the elements x1 , ..., xf (0)

if 2�k<n. The only elements above exactly one of x1 , ..., xf (0) are in Q.
(We are using the irreducibility properties in Corollary 4.6.)

Let I=[x1 , ..., xn]. It has exactly n lower covers in L; it also has exactly
f (0) upper covers in L that are subsets of Q, namely, I _ [xi$] (1�i�n)
and I _ [xi] (n<i� f (0)). Hence f (n)� f (0).

Suppose for a contradiction that f (n)> f (0). Then there exist f (n)& f (0)
elements w such that LC(w)=[x1 , ..., xn], y= y1 , ..., yf (n)& f (0) (Fig. 7.3).

(In fact, f (n)& f (0)=1, or else ay would have more than f (1)= f (0)
upper covers in L.)

There are exactly f (0) upper covers of ay _ [x$2 , ..., x$n] that are subsets
of Q; hence there exists z1 # P"( a y _ [x$2 , ..., x$n] _ Q) such that

LC(z1)�ay _ [x$2 , ..., x$n]

(Fig. 7.4).
We must have y<} z1 , or else ax$1 _ } } } _ ax$n would have more than

f (n)= f (0)+1 upper covers in L, f (0) being subsets of Q, and then

ax$1 _ } } } _ ax$n _ [ y] and ax$1 _ } } } _ ax$n _ [z1]

(Fig. 7.5).
Indeed, x$n # LC(z1), for, otherwise, ay _ ax$2 _ } } } _ ax$n&1 would have

more than f (n&1)= f (0) upper covers in L. Similarly, xi$<} z1 (2�i�n).
Now choose z2 # P"(ay _ [x$1, x$3, ..., x$n] _ Q) such that

LC(z2)�ay _ [x$1, x$3, ..., x$n]
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FIG. 7.3. An impossible scenario ( f (0)=4, f (1)=4, n=4, f (n)>4).

and z3 # P"(Q _ ay _ [x$1, ..., x$n]"[x$3]) such that

LC(z3)�ay _ ([x$1, ..., x$n]"[x$3])

(Fig. 7.6).
Of course, all three of z1 , z2 , z3 are distinct, as x$2 <} z1 but x$2�3 z2 .
Note that az1 _ az2 has more than f (2)= f (0) upper covers in L, f (0) of

them involving adding elements from Q, and then az1 _ az2 _ az3 , a
contradiction. K

Lemma 7.3. No element of L has more than f (0) lower covers, and
P=Q.

Proof. Assume, for a contradiction, that P"Q{<. Choose p # P"Q
minimal. Then I=ap & Q # Of (P) has more than f (0) upper covers in L, for
it has f (0) upper covers in L that are subsets of Q, and also ap, a con-
tradiction. K

The following is clear:
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FIG. 7.4. An impossible scenario ( f (0)=4, f (1)=4, n=4, f (n)>4).

Corollary 7.4. The following hold:

(1) P$� f (0)
i=1 N;

(2) L$N f (0)
0 ;

(3) f (n)= f (0) if 0�n� f (0). K

8. f (0)=2; f (1)= f (0); f (2)= f (0)

Corollary 8.1. The following hold:

(1) P$N+N;

(2) L$N2
0 ;

(3) f (n)=2 if 0�n�2.

Proof. It suffices to show that the poset Q of Corollary 4.6 is all of P.
Use the argument of Lemma 7.3. K
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FIG. 7.6. An impossible scenario ( f (0)=4, f (1)=4, n=4, f (n)>4).

Proof. This is obvious. K

Corollary 10.2. If f (1)=2 and f (2)= f (1), then the following hold:

(1) P$1� (N+N);
(2) L$1�N2

0 ;

(3)

f (n)={1
2

if n=0,
if 1�n�2.

Proof. See Corollary 8.1 and Lemma 4.1. K

Corollary 10.3. If f (1)=2 and f (2){ f (1), then L$Y.

Proof. See Corollary 5.6. K
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FIG. 7.6. An impossible scenario ( f (0)=4, f (1)=4, n=4, f (n)>4).

Proof. This is obvious. K

Corollary 10.2. If f (1)=2 and f (2)= f (1), then the following hold:

(1) P$1� (N+N);
(2) L$1�N2

0 ;

(3)

f (n)={1
2

if n=0,
if 1�n�2.

Proof. See Corollary 8.1 and Lemma 4.1. K

Corollary 10.3. If f (1)=2 and f (2){ f (1), then L$Y.

Proof. See Corollary 5.6. K
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Corollary 10.4. If f (1)�3, then the following hold:

(1) P$1�� f (1)
i=1 N;

(2) L$1�N f (1)
0 ;

(3)

f (n)={ 1
f (1)

if n=0,
if 1�n� f (1).

Proof. Use Lemma 4.1 and Corollary 7.4. K

11. The Characterization of Non-decreasing Cover Functions

Theorem 11.1. Let L be a finitary distributive lattice with non-decreasing
cover function f : N0 � N0 . Then one of the following holds:

(1) for some k�1, L$Nk
0 ; and for all n # N0 ,

f (n)={k
V

if 0�n�k,
otherwise;

(2) for some k�1, L$Y k; and for all n # N0 , f (n)=n+k;

(3) for some k�2, L$1�Nk
0 ; and for all n # N0 ,

1 if n=0,

f (n)={k if 1�n�k,

V otherwise;

(4) L$Y"[0Y]; and for all n # N0 ,

f (n)={2
n+1

if n=0,
if n�1;

(5) L$1; and for all n # N0 ,

f (n)={0
V

if n=0,
otherwise.

Moreover, the functions listed are cover functions for the corresponding
finitary distributive lattices.

Proof. If f (0)=0, we have (5).
If f (0)=1, we have (1) (Corollary 10.1), (3) (Corollary 10.2), (2)

(Corollary 10.3), or (3) (Corollary 10.4).
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If f (0)�2 and f (1){ f (0), by Lemma 4.7 we have (2) (Corollary 6.5).
Else, if f (0)=2, we have (1) (Corollary 8.1) or (4) (Corollary 9.1).
If f (0)�3 and f (1)= f (0), we have (1) (Corollary 7.4). K

Thus the 1975 conjecture of Stanley is settled.
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