
Chapter 14
How Al Qaeda Can Use Order Theory to Evade
or Defeat U.S. Forces
The Case of Binary Posets

Jonathan David Farley

Abstract Terrorist cells are modeled as finite partially ordered sets. This paper
determines the structure of the terrorist cell most likely to remain intact if a subset
of its members is captured at random, provided that the cell has a single leader and
no member has more than 2 immediate subordinates.

14.1 Introduction

I arrived at Ted K.’s cell. “Cell” was the wrong word: As the door swung open, I
walked into what you would think of as a plush apartment. All that would strike you
as strange was the absence of any windows.

“I still can’t get over how well they take care of you here,” I said, shaking my head.
“Is that flat-screen TV new? I’m surprised they let you watch the news.”

Ted was sitting at a large glass table, papers with his neat handwriting littering the
surface—ordered chaos. His grey-black beard and hair were as wild as ever. “Don’t
worry: it’s just for playing video games.”

I sat down, folded my hands and said, “You have something for me?”

Ted smiled, the wrinkles around his eyes deepening. “As you know, for the last five
years I have been working on the problem of creating the perfect terrorist cell.”

“From inside prison?” I asked with a cold smile.

“To be precise, I want to determine the structure of the terrorist cell that can best
withstand your government’s attempts to destroy it—a cell that, if a certain number
of its members were to be captured at random, would still have the best possible
chance of being able to carry out its mission.”
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“And why would you want to do that?”

“To settle a score. That fellow from the NSA said my research wasn’t useful. Wait
till Al Qaeda gets a hold of it: Then your military will wish it had given me funding
when they had the chance.”

I usually let Ted go on a while with his the-fools-I’ll-show-them-all monologue, but
today I had little time. “And you’ve succeeded?”

Ted’s shoulders sagged slightly. “Not quite, but I’m getting close.

“You remember that we model terrorist cells as partially ordered sets, or posets,
which are essentially organization charts where commands flow from the top to the
bottom.” He sketched a diagram, which he labeled, “Figure 14.1.”

Fig. 14.1

“In this example, Osama sits at the top of the organization. He can pass plans down
to his immediate subordinates, Obama”—I rolled my eyes—“and Adama, but only
them. Osama must rely on Obama and Adama to pass his orders further down the
organization: Adama to Bananarama, his only immediate subordinate, and Obama
to either Bananarama or Copacabana.

“Eventually Osama’s orders reach the foot soldiers, Copacabana and Fred, who are
the people who will actually carry out the attacks.

“Your government’s goal,” Ted continued, “is to arrest—”

“Or kill.”

“Arrest or kill enough terrorists so Osama’s plans cannot reach the foot soldiers. For
example, you could capture Osama himself, or both Obama and Adama, or both
Obama and Fred.”

“But not Copacabana and Adama,” I said impatiently, “because then Osama’s orders
could still get to a foot soldier, Fred, via Obama and Bananarama. I read Fraly’s
monograph, you know.”
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Ted smiled wanly. “Then you know that the subgroups of terrorists you want to
capture are called cutsets. So the cell with the fewest cutsets will be the hardest for
your government to disrupt.”

Ted sat back and put his hands behind his head. “Of course, the cell with a single
leader that has the fewest cutsets is clearly a spider: one leader with everyone else
as his immediate subordinate.” He called this “Figure 14.2.” “To prevent the leader
from passing his plans to at least one foot soldier, you either have to capture him or
capture every foot soldier.

Fig. 14.2: A spider.

“But this is unrealistic,” Ted continued, “because can one man really supervise 8 or
9 or 18 different people? It is much more practical,” Ted said, “to suppose there is
a bound, b—say 3 or 4—on the number of immediate subordinates a terrorist can
have.

“If the cell is a tree—that is, if the cell has one leader and no one has more than one
immediate superior, like Figure 14.3—then some computer scientists in Montreal
found that the best tree structure looks like this.” He drew Figure 14.4. “You have
a leader with exactly b immediate subordinates, all of them foot soldiers except for
one, who has b immediate subordinates, and so on, until you run out of men.” He
sighed.

Fig. 14.3: A binary tree with 7 terrorists.

“The problem is, there are lots of possible terrorist cell structures that are not trees.”

“Figure 14.1, for instance,” I chimed in.

“Still,” he said, “Fraly looked at all binary cells—”
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Fig. 14.4: The perfect binary terrorist tree with 7 members.

“‘Binary’?” I asked.

“Where b equals 2,” Ted clarified. “Fraly showed in his monograph that the best
binary cell with a single leader and at most 6 terrorists was always one of the special
trees he had discovered, the ones the Montreal group later considered, and Fraly
posed a problem.” He paused. “But now I have settled the issue.”

I stared at him, narrowing my eyes.

“In the binary case,” Ted said quietly.

14.2 Proof That the Optimal Binary Terrorist Cell with One
Leader Is a Pure Fishbone Poset

For order theory terminology, refer to Davey and Priestley 2002 and Farley 2003.

Definition 1. Let P be a finite poset. For p in P, let LC(p) be the set of lower covers
of p.

Definition 2. Let P be a finite poset. Let k be a natural number. A k-cutset is a k-
element subset that intersects every maximal chain of P. Let Cut(P,k) be the set of
k-cutsets of P and let cut(P,k) equal |Cut(P,k)|. A subset C of P is a cutset if it is a
|C|-cutset.

Observation 3. Let P be a finite poset with greatest element �. Assume LC(�)=
{t,x}. Then {t,x} is a cutset, and, if LC(t) and LC(x) are non-empty, {t}∪LC(x),
{x}∪LC(t), and LC(t)∪LC(x) are cutsets. ✷

Definition 4. Let P be a finite poset. Let b be a natural number. We say P is b-ary
if, for all p in P, |LC(p)| ≤ b; if b= 2, we call P binary.

Definition 5. For a natural number n, define the poset FP(n) as follows:
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FP(0) := /0
FP(1) := 1, the one-element poset

FP(k+2) := [FP(k)+1]⊕1 for all k ≥ 0.

Example 6. The posets FP(n) are shown in Figure 14.5 for 1 ≤ n≤ 6.

Fig. 14.5: The posets FP(n) for 1 ≤ n≤ 6.

Note 7. For n≥ 1, FP(n) is called in Farley 2007, Definition A0.1 the pure fishbone
poset of type ( n+1

2 , n−1
2 ;1,2, . . . , n−1

2 ;n) if n is odd and ( n+2
2 , n−2

2 ;1,2, . . . , n−2
2 ;n) if n

is even.

Proposition 8. For n≥ 3, cut(FP(n),1)=1.

For n≥ 3, cut(FP(n),2)=
�
n+1 if n= 4
n if n �= 4.

For n≥ 5, cut(FP(n),3)=
��n−1

2

�
+
�n−3

1

�
+2 if n= 6�n−1

2

�
+
�n−3

1

�
+1 if n �= 6.

Proof. This follows from Corollaries A0.1 and A0.2 of Farley 2007 or by direct
analysis. ✷

Corollary 9. Let P be a finite poset with a greatest element � that has exactly two
lower covers, t and x.

(1) Let a= 1 if |P|= 4 and let a= 0 otherwise. If

|{C ∈ Cut(P,2) : � /∈C andC �= {t,x}|> a

then cut(P,2) > cut(FP(|P|),2).
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(2) Let b= 2 if |P|= 6 and let b= 1 otherwise. If |LC(t)∪LC(x)| ≥ 2 and

|{C ∈ Cut(P,3) : � /∈C and {t,x} �⊆C}|> b

Then cut(P,3) > cut(FP(|P|),3).

Proof. (1) The cardinality of {C ∈ Cut(P,2) : � ∈C} is n−1, so by Observation 3,

cut(P,2) > n−1+1+a.

Use Proposition 8.

(2) The cardinality of {C ∈ Cut(P,3) : � ∈C} is
�n−1

2

�
;

|{C ∈ Cut(P,3) : � /∈C and {t,x} ⊆C}|=
�
n−3

1

�

by Observation 3; and cut(P,3)>
�n−1

2

�
+
�n−3

1

�
+b, so by Proposition 8 we are done.

✷

Lemma 10. Let P be a finite binary poset with greatest element �. Assume that |P|
is at least 3 and that for k equal to 1, 2, or 3, cut(P,k)≤cut(FP(|P|),k).
Then there exists a lower cover x of � such that P \ {x,�} has a greatest element
and

P= [P\{x,�}+{x}]⊕{�}.

Proof. Since |P| is at least 3, |LC(�)| is at least 1. If |LC(�)|=1, then by Observation
3, cut(P,1)≥ 2, contradicting Proposition 8.

Since P is binary, let LC(�)={t,x} where t �= x. Assume for a contradiction that
LC(t) and LC(x) are non-empty.

If |LC(t)|= 1 = |LC(x)|, then Observation 3 and Corollary 9(1) contradict Proposi-
tion 8.

Without loss of generality, |LC(t)|= 2. If |LC(x)|= 1, then, since |P| �= 4, Observa-
tion 3 contradicts Corollary 9(1).

If |LC(t)∩LC(x)| equals 2 or 1, then Observation 3 contradicts Corollary 9(1) or (2).
Thus LC(t)∩LC(x)= /0, so |P| �= 6 and hence Observation 3 contradicts Corollary
9(2).

Without loss of generality, LC(x)= /0. Then t is the greatest element of P \ {x,�}
and x � y for all y in P\{x,�}. ✷

Lemma 11. Let Q be a non-empty finite poset. Let x and � be distinct elements not
in Q and let P= (Q+{x})⊕{�}. Then for all k ≥ 0,

Cut(P,k+1) = {B∪{x} : B ∈ Cut(Q,k)}∪{D∪{x,�}: D⊆ Q and |D|= k−1}
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∪{E ∪{�}: E ⊆ Q and |E|= k}.

Proof. Let C ∈ Cut(P,k+1). If x and � belong to C, then let D equal C \{x,�}. If
� belongs to C but not x, then let E equal C \{�}. If � does not belong to C, then
x belongs toC sinceC is a cutset. Let B equalC \{x}.
If B is not a k-cutset of Q, then there is a maximal chain N of Q such that N∩B= /0.
Then M := N ∪{�} is a maximal chain of P since N is non-empty, so M∩C �= /0,
i.e., /0 �= N∩C = N∩B, a contradiction.

Conversely, if F is a subset of Q, then F ∪{�} and F ∪{x,�} are cutsets of P. If
B is a k-cutset of Q, let C equal B∪ {x}. If C /∈ Cut(P,k+ 1), then there exists a
maximal chainM of P such thatM∩C= /0. Clearly x /∈M and �∈M, andM \{�}
is a maximal chain of Q, so M∩C ⊇M∩B �= /0, a contradiction. ✷

Theorem 12. Let P be a finite binary poset with a greatest element such that, for all
k ≥ 0, cut(P,k)≤cut(FP(|P|),k).
Then P is isomorphic to FP(|P|).
Proof (by induction on |P|). We may assume that P has at least 3 elements. By
Lemma 10, there exist x in P and a subset Q of P with a greatest element such that
P= (Q+{x})⊕{�}, where � is the greatest element of P. Clearly Q is binary.

By Lemma 11, for all k ≥ 0, cut(Q,k)≤cut(FP(|P|−2),k), so by induction

Q∼= FP(|P|−2).

Hence P is isomorphic to FP(|P|). ✷

14.3 Conclusion

“So what’s that mean in English?” I pleaded.

Ted sighed. “It means that if a terrorist cell has a single leader, and each terrorist
has at most 2 immediate subordinates, then the cell structure most likely to suc-
ceed if some of the terrorists are captured at random looks like something in Fig-
ures 14.4 and 14.5.”

I shuffled my papers and stood up from the glass table. “Okay, we’re done here,” I
said: “You’re never getting out.” I smiled.

Ted was unperturbed. “Wait, I’m not dangerous yet. I haven’t figured out how terror-
ists should organize their cells if each man can have 3 or more subordinates. There’s
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still work to be done. You still have time to support my research before it’s too late
for your government, before Al Qaeda gets a hold of my work and uses it to evade
or defeat your government’s forces.”

“I’m not worried,” I lied. I walked to the door of his cell, pausing with a shock as I
opened it.

Man! Even the door handles were nice.
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