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Coproducts of bounded distributive lattices: cancellation

A Problem from the 1981 Banff Conference on Ordered Sets

Jonathan David Farley

Abstract. Let L ∗ M denote the coproduct of the bounded distributive latticesL andM. At the 1981 Banff
Conference on Ordered Sets, the following question was posed: What is the largest classL of finite distributive
lattices such that, for every non-trivial Boolean latticeB and everyL ∈ L, B ∗ L = B ∗ L′ impliesL = L′?

In this note, the problem is solved.

1. Introduction

A Post algebrais a bounded distributive lattice (with least element 0 and greatest
element 1) with a non-trivial finite chain 0= c0 < · · · < cn−1 = 1 and a Boolean
sublatticeB such that every element has a unique representation

∨n−1
i=1 (bi ∧ ci) where

b1 > · · · > bn−1 are inB. The chain is called thechain of constants. It is well known
that Post algebras are exactly the coproductsB ∗ C of non-trivial Boolean latticesB and
non-trivial finite chainsC in the category of bounded distributive lattices (see [13],
Theorem 2). It is also well known that the chain of constants in a Post algebraP is
unique in the following sense: IfB is a Boolean sublattice ofP andC andC′ are finite
subchains containing 0 and 1 such thatP = B ∗ C = B ∗ C′, thenC = C′. That is,C
andC′ are equal as subsets, not simply isomorphic ([7], Theorem 2.1). More precisely, if
ιB : B ↪→ B ∗ C, ιC : C ↪→ B ∗ C, ι′B : B ↪→ B ∗ C′, andιC′ : C′ ↪→ B ∗ C′ are the
natural monomorphisms and9 : B ∗C ∼= B ∗C′ an isomorphism, then the image of9 ◦ ιC

is the image ofιC′ .
Balbes and Dwinger proved that ifB andB ′ are non-trivial Boolean lattices andC and

C′ non-trivial bounded chains, thenB ∗ C = B ′ ∗ C′ impliesB = B ′ andC ∼= C′ ([1],
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Theorem 1). Moreover, for a given non-trivial bounded chainC, B ∗ C = B ∗ C′ implies
C = C′ for all non- trivial Boolean latticesB and all bounded chainsC′ if and only if C is
rigid, that is, has just one automorphism ([1], Theorem 6). Comer and Dwinger investigated
bounded distributive latticesK such that, for all bounded distributive latticesL andM in a
given class,K ∗ L = K ∗ M impliesL = M ([3]).

At the 1981 Banff Conference on Ordered Sets, F. Yaqub asked for a description of the
largest classL of finite distributive lattices such that, for every non-trivial Boolean lattice
B and everyL ∈ L, B ∗ L = B ∗ L′ impliesL = L′ ([12], p. 849).

The problem as stated must be formulated more precisely, but we answer the question, as
well as the corresponding one for isomorphisms (Theorems 2 and 3). Our tool is Priestley
duality for distributive lattices.

2. Definitions, Notation, and Basic Results

For basic notions, see [6]. A poset isconnectedif, for all p, q ∈ P , there existn ∈ N

(which may be taken to be even) andp1, . . . , pn ∈ P such thatp = p1 6 p2 > p3 6 · · · 6
pn = q. A componentof a poset is a non-empty maximal connected subset. A subsetU

of a posetP is anup-setif, for all u ∈ U andp ∈ P, u 6 p impliesp ∈ U . A partially
ordered topological spaceP is totally order-disconnectedif, for all p, q ∈ P such that
p 6≤ q, there exists a clopen up-setU such thatp ∈ U andq /∈ U . A Priestley spaceis a
compact totally order-disconnected space.

Given an ordered spaceP , let D(P ) denote the bounded distributive lattice of clopen
up-sets. Given a bounded distributive latticeL, letP(L) denote the Priestley space of prime
filters, partially ordered by set-inclusion and with the topology generated by the subbasis

{{F ∈ P(L) | a ∈ F } , {F ∈ P(L) | a /∈ F } | a ∈ L} .

The operatorsD andP extend to functors which yield a dual equivalence between the cate-
gories of bounded distributive lattices with{0, 1}-preserving homomorphisms and Priestley
spaces with continuous order-preserving maps. For some consequences of Priestley duality,
see [9] and [10].

It is well known thatP(L) is an antichain ifL is a Boolean lattice ([6], Theorem 9.8).
Also, P(L) is a finite poset with the discrete topology ifL is a finite distributive lattice.
Further,P(L×M) isorder-homeomorphic(order-isomorphic via a map that is a homeomor-
phism) toP(L) + P(M), the disjoint sum of the ordered spaces ([6], Exercise 10.3(iii)).
Lastly, P(L ∗ M) is order-homeomorphic toP(L) × P(M). It can be shown that, for
bounded distributive latticesL andM, L∗M is isomorphic toLP(M), the lattice of continu-
ous order-preserving maps fromP(M) to L with the discrete topology, ordered pointwise;
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L is associated with the constant maps, andM with the maps2P(M), where2 = {0, 1}
([5], Theorem and Corollary, [4], Corollary 2.3, and [11], Theorem). In [14] and [15], this
aspect of duality is used to understandgeneralized Post algebras, coproducts of Boolean
lattices and bounded distributive lattices. (See Figures 1–4.)

Figure 1 The posetP and the latticeL = D(P )

Figure 2 The posetQ and the latticeM = D(Q)

Figure 3 The posetP × Q
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Figure 4 The latticeL ∗ M ∼= D(P × Q)

3. The Solution to the Problem for Isomorphisms and Equality

We must emend Yaqub’s problem because of the following example: LetB be a Boolean
lattice such thatB2 ∼= B. (For instance, letB := 2ω.) Then for any finite posetP, BP ∼=
B(2×P). Hence, for any non-trivial finite distributive latticeL, B ∗ L ∼= B ∗ L2, where
L2 6∼= L by cardinality considerations. Hence, there exist bounded distributive latticesP

andL′ such thatP = B∗L = B∗L′ but the image ofL in P is not equal or even isomorphic
to the image ofL′ in P .

Therefore, in the problem, we must restrict the class to whichL′ can belong. We insist
thatL andL′ belong to thesame class.

A classL of finite distributive lattices isshabazzif, for all latticesM andN, M×N2 ∈ L
impliesM × N ∈ L. A finite distributive lattice issquare-freeif it has no direct factor of
the formN2 (N a non-trivial lattice). LetB be the class of non-trivial Boolean lattices.

LEMMA 3.1. Let X be an antichain,P and P ′ posets,C a component ofP , and
9 : X × P ∼= X × P ′ an order-isomorphism. LetπX : X × P ′ → X be the projection.

Then, for allx ∈ X, there existsx′ ∈ X such that

(πX ◦ 9)[{x} × C] = {x′}.

Proof. Suppose that9(x, p0) = (x′, p′
0) and9(x, p1) = (x′′, p′

1). If p0 6 p1, then
(x′, p′

0) 6 (x′′, p′
1), so thatx′ = x′′. ¨



Vol. 45, 2001 Coproducts of bounded distributive lattices: cancellation 379

THEOREM 3.2. Let L be a shabazz class of finite distributive lattices. The following
are equivalent:

(1) for all B ∈ B andL, L′ ∈ L, B ∗ L ∼= B ∗ L′ impliesL ∼= L′;
(2) every member ofL is square-free.

Proof. AssumeL ∼= M ×N2 for someL ∈ L and latticesM andN (N non-trivial). Let
L′ := M × N and letB := 2ω. As B ∼= B2, we haveB ∗ L ∼= B ∗ L′.

Now assumeB ∈ B and letL andL′ be square-free finite distributive lattices. Then
B ∗ L ∼= B ∗ L′ implies there exists an order-isomorphism9 : X × P ∼= X × P ′ where
X := P(B), P := P(L), andP ′ := P(L′); P andP ′ are finite posets with pairwise
non-isomorphic components. LetπP ′ : X × P ′ → P ′ be the projection and fixx ∈ X. By
Lemma 3.1, the map

p 7→ (πP ′ ◦ 9)(x, p) (p ∈ C)

is an order-isomorphism on each componentC of P . ¨

THEOREM 3.3. Let L be a class of finite distributive lattices. The following are
equivalent:

(1) for all B ∈ B andL, L′ ∈ L, B ∗ L = B ∗ L′ impliesL = L′;
(2) every member ofL is rigid.

Proof. Let L be a finite distributive lattice andφ : L ∼= L a non- trivial automorphism.
Define8 : L2 → L2 by 8(a, b) = (a, φ(b)) (a, b ∈ L). Then8 is an automorphism of
22 ∗ L that does not map constants to constants.

Now let X be a non-empty Priestley space that is an antichain. LetP andP ′ be finite
rigid posets. Let9 : X × P ∼= X × P ′ be an order-homeomorphism. We must show that,
for all U ∈ D(P ), there existsU ′ ∈ D(P ′) such that9[X × U ] = X × U ′.

Without loss of generality,P andP ′ are connected. By Lemma 3.1, for allx ∈ X,
there existsx′ ∈ X such that9[{x} × P ] = {x′} × P ′. For all x ∈ X andU ∈ D(P ),
let U ′

x ∈ D(P ′) be such that9[{x} × U ] = {x′} × U ′
x . (Since{x} × U is an up-set of

X × P, 9[{x} × U ] is an up-set ofX × P ′, and we already know that it is of the form
{x′} × V for some setV ⊆ P ′. ThisV must be an up-set ofP ′.)

It suffices to show that, for allx0, x1 ∈ X andp ∈ P ,

(πP ′ ◦ 9)(x0, p) = (πP ′ ◦ 9)(x1, p).

By Lemma 3.1, the mapsp 7→ (πP ′ ◦ 9)(x0, p) andp 7→ (πP ′ ◦ 9)(x1, p)(p ∈ P) are
order-isomorphisms, so, by rigidity, they are equal. ¨
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COROLLARY 3.4. The largest class of finite distributive lattices with the property that,
for any two latticesL, L′ in the class and any non-trivial Boolean lattice B,

B ∗ L = B ∗ L′ implies L = L′,

is the class of all finite rigid distributive lattices.

Hence we have solved the emended form of Yaqub’s problem, where we insist that the
latticesL andL′ belong to the same class.

4. Related Results

In [3], a research announcement of results that apparently were never published∗, it
is stated that ifK, L, andM are bounded distributive lattices withL andM rigid, then
K ∗ L = K ∗ M impliesL = M. (The author discovered Theorem 3.3 independently of
[3].) The interpretation of this statement isnot the same as in our paper, as is evidenced by
the case whereK, L, andM are each the three-element chain (cf. [8], Figure 4).

In [2], Theorem 2.4(i), it is shown that there exist countable Boolean algebrasL andL′
such that22 ∗ L ∼= 22 ∗ L′ butL 6∼= L′. It also follows form (1.4) in [2] that, for non-trivial
finite distributive latticesL, L′, andM, L ∗ M ∼= L′ ∗ M impliesL ∼= L′.
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