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Coproducts of bounded distributive lattices: cancellation

A Problem from the 1981 Banff Conference on Ordered Sets

JONATHAN DAVID FARLEY

Abstract. Let L « M denote the coproduct of the bounded distributive lattitesnd M. At the 1981 Banff
Conference on Ordered Sets, the following question was posed: What is the largest afdsste distributive
lattices such that, for every non-trivial Boolean lattigeand everyl. € £, B L = B = L' impliesL = L'?

In this note, the problem is solved.

1. Introduction

A Post algebrais a bounded distributive lattice (with least element 0 and greatest
element 1) with a non-trivial finite chain & ¢g < --- < ¢,—1 = 1 and a Boolean
sublattice B such that every element has a unique representé\ﬁ?grf(b,- A ¢;) where
by >---> b,_1 are inB. The chain is called thehain of constants It is well known
that Post algebras are exactly the coproductsC of non-trivial Boolean lattice® and
non-trivial finite chainsC in the category of bounded distributive lattices (see [13],
Theorem 2). It is also well known that the chain of constants in a Post algehsa
unique in the following sense: IB is a Boolean sublattice af andC andC’ are finite
subchains containing 0 and 1 such tlfat= B « C = B « C’, thenC = C’. Thatis,C
andC’ are equal as subsets, not simply isomorphic ([7], Theorem 2.1). More precisely, if
tg:B—> BxC,ic:C—> BxC,l5: B— BxC',andic : C' — B C’ are the
natural monomorphisms and: B« C = B« C’ anisomorphism, then the imagewb (¢
is the image of .

Balbes and Dwinger proved that#f and B’ are non-trivial Boolean lattices an@dand
C’ non-trivial bounded chains, the® « C = B’ =« C’ impliesB = B’ andC = C’ ([1],
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Theorem 1). Moreover, for a given non-trivial bounded ch@jrB « C = B x C’ implies

C = C’ for all non- trivial Boolean lattice® and all bounded chair@'’ if and only if C is

rigid, that s, has just one automorphism ([1], Theorem 6). Comer and Dwinger investigated
bounded distributive lattice& such that, for all bounded distributive latticesandM in a

given classkK « L = K « M impliesL = M ([3]).

At the 1981 Banff Conference on Ordered Sets, F. Yaqub asked for a description of the
largest clas< of finite distributive lattices such that, for every non-trivial Boolean lattice
BandeveryL € L, B+ L = B« L' impliesL = L’ ([12], p. 849).

The problem as stated must be formulated more precisely, but we answer the question, as
well as the corresponding one for isomorphisms (Theorems 2 and 3). Our tool is Priestley
duality for distributive lattices.

2. Definitions, Notation, and Basic Results

For basic notions, see [6]. A posetdsnnectedf, for all p, g € P, there existt € N
(which may be takentobe even)apd ..., p, € Psuchthap = p1 < p2 > p3 <--- <
pn = q. A componenbf a poset is a non-empty maximal connected subset. A sdbset
of a posetP is anup-setif, forall u € U andp € P,u < p impliesp € U. A partially
ordered topological space is totally order-disconnected, for all p,q € P such that
p% g, there exists a clopen up-gétsuch thatp € U andq ¢ U. A Priestley spacés a
compact totally order-disconnected space.

Given an ordered spade, let D(P) denote the bounded distributive lattice of clopen
up-sets. Given a bounded distributive latticdet P (L) denote the Priestley space of prime
filters, partially ordered by set-inclusion and with the topology generated by the subbasis

{FeP(L)|laceF},{FeP(L)|la¢ F}|laelL}.

The operator® and P extend to functors which yield a dual equivalence between the cate-
gories of bounded distributive lattices wit®, 1}-preserving homomorphisms and Priestley
spaces with continuous order-preserving maps. For some consequences of Priestley duality,
see [9] and [10].

It is well known thatP (L) is an antichain ifL. is a Boolean lattice ([6], Theorem 9.8).
Also, P(L) is a finite poset with the discrete topologylifis a finite distributive lattice.
Further,P (L x M) isorder-homeomorphiforder-isomorphic via a map thatisa homeomor-
phism) toP (L) + P(M), the disjoint sum of the ordered spaces ([6], Exercise 10.3(iii)).
Lastly, P(L % M) is order-homeomorphic t& (L) x P(M). It can be shown that, for
bounded distributive latticels andM, L « M is isomorphic ta.”)  the lattice of continu-
ous order-preserving maps frof(M) to L with the discrete topology, ordered pointwise;
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L is associated with the constant maps, afidvith the map2” ™), where2 = {0, 1}
([5], Theorem and Corollary, [4], Corollary 2.3, and [11], Theorem). In [14] and [15], this

aspect of duality is used to understageheralized Post algebrasoproducts of Boolean
lattices and bounded distributive lattices. (See Figures 1-4.)

A

Figure 1 The poseé® and the latticd. = D(P)

)

O

o

Figure 2 The posed and the latticeM = D(Q)

Figure 3 The poseP x Q
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Figure 4 The latticd * M = D(P x Q)

3. The Solution to the Problem for Isomorphisms and Equality

We must emend Yaqub’s problem because of the following exampleB beta Boolean
lattice such thaB? = B. (For instance, leB := 2¢.) Then for any finite poseP, BY =
B@xP)  Hence, for any non-trivial finite distributive lattide, B « L = B x L2, where
L? % L by cardinality considerations. Hence, there exist bounded distributive laftices
andL’ suchthatP = BxL = BxL’ buttheimage of. in P is not equal or even isomorphic
to the image of.’ in P.

Therefore, in the problem, we must restrict the class to whictan belong. We insist
that L andL’ belong to thesame class.

A classC of finite distributive lattices ishabazi#, for all latticesM andN, M x N2 € £
impliesM x N € L. Afinite distributive lattice issquare-fredf it has no direct factor of
the formN?2 (N a non-trivial lattice). Let3 be the class of non-trivial Boolean lattices.

LEMMA 3.1. Let X be an antichain,P and P’ posets,C a component of?, and
¥ : X x P= X x P’ anorder-isomorphism. Lety : X x P’ — X be the projection.
Then, for allx € X, there exists” € X such that

(x o W)[{x} x C] = {x}.

Proof. Suppose tha¥ (x, po) = (x', py) and ¥ (x, p1) = (x”, p7). If po < p1, then
(', pp) < (x", pp), so thate’ = x”. O
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THEOREM 3.2. Let £ be a shabazz class of finite distributive lattices. The following
are equivalent:

(1) forall Be BandL,L' € L, Bx L = B x L' impliesL = L/;
(2) every member of is square-free.

Proof. AssumeL = M x N2 for someL e £ and lattices\ andN (N non-trivial). Let
L':=M x N and letB := 2°. AsB = B?, we haveB x L = B x L'.

Now assumeB € B and letL and L’ be square-free finite distributive lattices. Then
B x L = B x L' implies there exists an order-isomorphigm: X x P = X x P’ where
X ;= P(B),P := P(L),andP’ := P(L’); P and P’ are finite posets with pairwise
non-isomorphic components. Lep: : X x P’ — P’ be the projection and fix € X. By
Lemma 3.1, the map

p= (wproW)(x,p) (pel)

is an order-isomorphism on each compon€érdf P. O

THEOREM 3.3.Let £ be a class of finite distributive lattices. The following are
equivalent:

(1) forall Be BandL,L' € £L,B* L = B L' impliesL = L;
(2) every member of is rigid.

Proof. Let L be a finite distributive lattice angl : L = L a non- trivial automorphism.
Define® : L2 — L2 by ®(a, b) = (a, $(b)) (a, b € L). Thend is an automorphism of
22 x L that does not map constants to constants.

Now let X be a non-empty Priestley space that is an antichain.PLand P’ be finite
rigid posets. Let : X x P = X x P’ be an order-homeomorphism. We must show that,
forall U € D(P), there existd/’ € D(P’) suchthatV[X x U] = X x U’.

Without loss of generalityP and P’ are connected. By Lemma 3.1, for alle X,
there existst’ € X such that¥[{x} x P] = {x'} x P’. Forallx € X andU € D(P),
let U, € D(P’) be such thatv[{x} x U] = {x'} x U,. (Since{x} x U is an up-set of
X x P,¥Y[{x} x U] is an up-set ofX x P’, and we already know that it is of the form
{x'} x V for some seV C P’. ThisV must be an up-set d?’.)

It suffices to show that, for allg, x1 € X andp € P,

(7wpr o W)(x0, p) = (mpr 0 W)(x1, p).

By Lemma 3.1, the mapg +— (rpr o W) (xg, p) andp — (rpr o ¥)(x1, p)(p € P) are
order-isomorphisms, so, by rigidity, they are equal. O



380 JONATHAN DAVID FARLEY ALGEBRA UNIVERS.

COROLLARY 3.4. The largest class of finite distributive lattices with the property that,
for any two latticed., L’ in the class and any non-trivial Boolean lattice B,

BxL=BxL implies L=L,
is the class of all finite rigid distributive lattices.

Hence we have solved the emended form of Yaqub’s problem, where we insist that the
latticesL andL’ belong to the same class.

4. Related Results

In [3], a research announcement of results that apparently were never published
is stated that ifK, L, and M are bounded distributive lattices with and M rigid, then
K %L = K %= M impliesL = M. (The author discovered Theorem 3.3 independently of
[3].) The interpretation of this statementiiar the same as in our paper, as is evidenced by
the case wher&, L, andM are each the three-element chain (cf. [8], Figure 4).

In [2], Theorem 2.4(i), it is shown that there exist countable Boolean algébaasi L’
such thal?x L = 22« L' butL % L'. It also follows form (1.4) in [2] that, for non-trivial
finite distributive latticed., L', andM, L x M = L' * M impliesL = L’.
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