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Let L be a bounded distributive lattice. For k > 1, let S (L) be the lattice of k-ary
functions on L with the congruence substitution property (Boolean functions); let
S(L) be the lattice of all Boolean functions. The lattices that can arise as S (L) or
S(L) for some bounded distributive lattice L are characterized in terms of their
Priestley spaces of prime ideals. For bounded distributive lattices L and M, it is
shown that S;(L)=S,(M) implies S (L)=S,(M). If L and M are finite, then
Si(L)= Sy (M) implies L~ M. Some problems of Gritzer dating to 1964 are thus
solved. © 2000 Academic Press
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1. THE PROBLEM

Let L be a bounded distributive lattice and let k>1. A function
fi L* — L has the congruence substitution property if, for every congruence
0 of L, and all (a,, by), ..., (as, b;) €0, we have f(ay, ..., a;) Of(by, ..., by).
The set of all such functions forms a bounded distributive lattice, denoted
S, (L) (also called the lattice of Boolean functions in [3]). Let S(L) be the
lattice of all Boolean functions of finite arity (on the variables x,, x,, ...).

Griétzer has proposed the following problems [3]:

ProBLEM 1 (Gritzer, 1964). Let L and M be bounded distributive lat-
tices such that S;(L)=S,(M).

Is S, (L) necessarily isomorphic to S, (M)?
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PrOBLEM 2 (Gritzer, 1964). Characterize those lattices isomorphic to
S, (L) or S(L) for some bounded distributive lattice L.

(See also General Lattice Theory [4], Problem 11.14.)

We solve both of these problems (Corollary 5.6, Theorem 6.7, and
Theorem 6.9).

Gritzer has also proposed the following problem [3]: Given a bounded
distributive lattice L, find every bounded distributive lattice M such that
Si(L)= S, (M) (or such that S(L)=~S(M)). (In General Lattice Theory
[4], Problem I1.13, he asks: To what extent do S(L) and S, (L) determine
the structure of L?)

We prove that, for a finite distributive lattice L, S, (L) fully determines
L; but there are infinitely many pairwise nonisomorphic finite distributive
lattices L,, L,, ... such that S(L)=~S(L,) (Theorem 7.1 and Note 7.2).

Along the way, we completely classify the Boolean functions on a bounded
distributive lattice L (Theorem 4.7). Our central result is that S; (S (L)) is
canonically isomorphic to S, (L) (Theorem 5.5).

Our proofs rely heavily on Priestley duality for distributive lattices.

2. HISTORICAL BACKGROUND

Functions on a general algebra with the congruence substitution
property are the focus of the theory of affine completeness. (See, for
instance, [6].)

It is obvious that every lattice polynomial on a bounded distributive lat-
tice has the congruence substitution property, as does every Boolean
algebra polynomial on a Boolean lattice. (For instance, (x A y) Vv
z'e€S5(L) if L is Boolean). Gritzer proved the converse ([2], Theorem 1):
Every function on a Boolean lattice with the congruence substitution property
is a Boolean algebra polynomial (hence the term “Boolean function”). He
also characterized those bounded distributive lattices such that every
Boolean function is a lattice polynomial ([3], Corollary 3).

The key result for our purposes is the following

THEOREM [3]. Let L be a bounded distributive lattice with least element
0, and greatest element 1. Let k>1 and let 2:={0,,1,}.
For all f: L*— L, let ¢,: 2% — L be the restriction of f to 2~.

(1) Forall f, ge Sy (L), f =g if and only if ¢,=¢,.

(2) Let ¢: 2’i—> L. There exists f €S, (L) such that ¢=0¢; if and only
if the interval [4(b), ¢(@) v ¢(b)] is a Boolean lattice for all a, be2* such
that G <b.



DISTRIBUTIVE LATTICES 195

3. MATHEMATICAL BACKGROUND, TERMINOLOGY, AND
NOTATION (A PRIMER ON PRIESTLEY DUALITY)

The central reference is [1].

Let L be a bounded distributive lattice; let 2 :={0,, 1.}, where 0, is the
least element of L and 1, is the greatest element. For a, be L, where a <b,
let [a, b], be the interval {ce L|a<c<b}. Let Con L be the congruence
lattice of L. For § e Con L and «a, be L, we write a0b if (a, b) € 0.

For k>1, a function f: L¥ — L has the congruence substitution property
if, for all #e Con L and all a4, by, ..., ai, by €L, a;0b, (i=1, ..., k) implies
flay, .., ay) 0f(by, .., by). The (bounded distributive) lattice of all such
functions, also called the k-ary Boolean functions, is denoted S, (L).

If we view the members of S, (L) as functions depending on the variables
X1, - X, We can take the union

U Si(L)
k=1

to get the (bounded distributive) lattice S(L) of all (finitary) Boolean
functions.

Let P be a poset. A down-set of P is a subset U< P such that, for all
peP and ue U, p<u implies that p e U. The poset of clopen down-sets of
an ordered topological space P, partially ordered by inclusion, is a boun-
ded distributive lattice, denoted ((P). (Meet is intersection, join is union,
Oppy s &, and 14p) is P.)

A Priestley space P is a compact (partially) ordered topological space
such that, for p, g € P, p & ¢ implies that p ¢ U and ¢ € U for some U e O(P).
Given a bounded distributive lattice L, the poset P(L) of prime ideals
forms a Priestley space, with the subbasis

{{IeP(L)|ael},{IeP(L)|a¢l}|acL}j.
It is well known that L is isomorphic to ¢(P(L)) via the map
ar—U,:={IeP(L)|a¢l}.

It is also well known that every Priestley space P is order-homeomorphic
(ie., order-isomorphic and homeomorphic via the same function) to
P(O(P)) by the map

p—1,:={Uec0(P)|p¢ U}.

Indeed, the category D of bounded distributive lattices with {0, 1}-preserving
homomorphisms is dually equivalent to the category P of Priestley spaces
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with continuous order-preserving maps. [ If L is a finite distributive lattice,
and #(L) is its poset of join-irreducibles, then L =~ O( #(L)). If P is a finite
poset, then P=~ #((O(P)).]

Under the dual equivalence functor, a map f: L - M in D corresponds
to the map ¢: P(M)— P(L) in P given by ¢(J) = f~1(J) for all Je P(M).
Similarly, a map ¢: P — Q in P corresponds to the map f: O(Q) — O(P) in
D given by f(V)=¢ (V) for all Ve O(Q). (See [8]; [1], 10.25.)

If L, M eD, every prime ideal of L x M is of the form Ix M or LxJ,
where e P(L) and Je P(M) ([ 1], Exercise 9.3). If M is a {0, 1}-sublattice
of LeD, then every Je P(M) is of the form In M for some /e P(L);
moreover, the function /+— 7N M is a continuous order-preserving map
from P(L) onto P(M).

It is well known (Nachbin’s Theorem, [4], Theorem I1.1.22) that Le D
is Boolean if and only if P(L) is an antichain (that is, distinct elements are
incomparable).

In the sequel, let PeP and let L := O(P).

Every clopen subset of P is a Priestley space; and for U, Ve O(P),
O(U\V) is isomorphic to [Un V, U]. Every clopen subset of PeP is a
finite union of sets of the form U\V, where U, Ve O(P).

Forall Q< P, let 0,:={(U, V)eL*|Un Q=Vn Q}; if Q is a singleton
{p}, we write 0,. It is well known that Con L={0,| Q<P is closed}
([17, 10.27).

Given USP, let [u:={peP|p<u for some ue U}; let Max U be the
set of maximal elements of the poset U; let U°:= P\U and let U' := U.

Let % (L) be the family of 2*-tuples

{(Ug)serr e L% |for all §, 52X, 5 < gimplies | Us < Us.

(Note that (L) is {0, 1}-sublattice of L>)
For allpeP £e2* let

1, ;= {(Uﬁ)ﬁEZk e%(L)|p¢ Us‘}'

We know that P(%. (L)) ={I, ;| pe P, £e2*}.

An element pe P is normal if there exist U, VeL such that pe U, p¢ V,
and [Un V, U] is a Boolean lattice; otherwise p is special. (Note that, if
L is finite, every p € P is normal.)

For any ordered topological space R, let Pix R be the ordered topologi-
cal space with underlying space P x R and partial ordering

< puri=<pxr\{((p. 1), (p. 1)) €(Px R)?|pis normal and r#r'}.
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We denote the ith component of &§€2F by ¢, (1<i<k); R)) denotes the
element of 25! such that

— (e if 1<i<k
(80)’:{0 if i=k+1.

=2

Similarly, we define el e 2kt 1; & is the complement of & in 2*.

4. THE LATTICE OF k-ARY BOOLEAN FUNCTIONS

In this section, we completely characterize the k-ary Boolean functions
on a bounded distributive lattice L (Theorem 4.7). In so doing, we obtain
Griitzer’s result that every f e S, (L) is determined by its restriction to 2%,
where 2:={0,,1,}; we also obtain a new description of the functions
¢: 2% — L that are restrictions of Boolean functions to 2* [easily seen to be
equivalent to Grétzer’s ([ 3], Theorem)].

In the sequel, let P be a Priestley space and let L be the bounded
distributive lattice O(P).

We begin with some trivial observations.

NoOTE 4.1. Let Ue O(P). Then |U= U\Max U.

Proof. Every clopen subset of P is in P, and so corresponds to the
poset of prime ideals of some bounded distributive lattice. By Zorn’s
Lemma, every prime ideal in such a lattice is contained in a maximal
lattice. ||

LEmmA 4.2, Let U, V, Q< P. Then Un Q =V n Q implies
(P\U)n Q= (P\V)n Q.

NotEg 4.3. Let U, Ve O(P). The following are equivalent:

(1) lusw

(2) U\V is an antichain;

(3) [UnV, U], is a Boolean lattice;
4) [V, Uu V], is a Boolean lattice.

Proof. Clearly (1) is equivalent to (2), (2) is equivalent to (3), and (3)
is equivalent to (4). |1
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LemMmA 4.4. Let f€S,(L). Then for all U, .., U, €L,

k
S U= ) f(&nU;
ge2k i=1
Proof. Let peP;let Uy, .., U, € O(P).
Fori=1, .,k let

&=

1

{1 if pelU,
0 if p¢U,

(so that peU% and U;0,¢;). Hence pef(U,,..,U,) if and only if

iYpCi
PES(&rs s &)
Now assume that pe (\f_, f(£)n U% for some £€2*. Then U,0,¢, for

i=1, ..k, so that f(Uy, .., Uy) 0,f(&) and hence pef(U,, .., Uy). |

LemmA 4.5. Let fe€ S (L). Then (f(&))zcqr is in % (L).

_ Proof.  Let J, £€2¥ be such that J <& Assume for a contradiction that
1 f(6) Z f(2). Then there exist p, g€ f(J) such that p <gq and p ¢ f(&)
Let Ue O(P) be such that pe U and ¢ ¢ U. Then U0,1, and U0,0,.
Fori=1, ..k, let

U, :=

13

{U it 6,<e,
0

1

otherwise,

so that U,0,¢; and U,0,6,

iYqYi

Hence qef Ui, ..., Up), so that pef(U,, .., Uy); but

p ¢f( Ula ensy Uk)a

a contradiction. ||

LeMMA 4.6, Let (Up)zcq € % (L). Define f:L*— L as follows: for
U,,.., U.eL, let

K
SU, . U):=) () UsnUs.

ge2k i=1

Then fe S, (L) and, for all £€2*, f(8) = U,.

&

Proof. First we show that f is well defined. Let U,, ..., U, € L. Clearly
f(U,, ..., Uy) is a clopen subset of P. Let p, g€ P be such that p < g where
qef(Uy, .., U,). We must show that pef(U,, ..., Uy).
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Assume not, for a contradiction. There exists J € 2% such that

k
ge () Usn U2

i=1

Fori=1, ..k, let

d; if peU?,
&=
! 1 otherwise.

For some je {1, ...k}, 5;=0 and ¢;=1 (or else

k
PE m Ugﬁ U?",

i=1

a contradiction). Hence d <& Thus p e U,; and since

k
re () UsnU%,

i=1

we have pef(Uy, .., Uy), a contradiction. Hence f: L¥ — L is well defined.
Clearly fe€ S, (L). (See Lemma 4.2.)

Finally, let £e2*. We will show that f(&)= U,. Certainly ¢%=P for
i=1,..,k, so

k
N Usnes=U,.

i=1

Now let §'e2* be distinct from & Then there exists i e {1, ..., k} such that
0, #¢;. If 5,=0 and ¢;=1, we have ¢%= . If 6,=1 and ¢;=0, we have
€% = (7. Hence

k
(| Usnedi=.

i=1
Thus £(8) = U,. |

The main theorem of this section provides an alternate, unified proof of
both [2], Theorem 1 and [3], Theorem. (Note the similarity with [5],
Theorem 2.41, which the author came across after proving the main
theorem: [ 5], Theorem 2.41 deals with normal forms for propositional for-
mulas.) Our result extends these theorems by explicitly describing all
possible k-ary Boolean functions.
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ab

b a

[, ;
P L

FIG. 1. The poset P and the lattice L = ()( P).

THEOREM 4.7. The lattices S, (L) and ¥.(L) are isomorphic.
Define a map @: S, (L) — S.(L) as follows: for all fe S, (L), let

D(f) :=(f(8))se

Define a map V. 9.(L) — S, (L) as follows: for all (U,):co € %.(L), let
Y((U,)set): L* — L be the function defined for all U,, ..., U, € L by

k
(U ser ) Uy, ooy Uy) i= U ﬂ Usn UG
ge2k i=1
Then @ and ¥ are mutually inverse order-isomorphisms.
Proof. The theorem follows from Lemmas 4.4-4.6. ||

The theorem implies that the generic unary Boolean function f: L — L is
given by

S0)=(U\U)u (U, n V),

where U,, U, € L are such that iUO cU,.

ExaMmPLE 4.8. Let P be the two-element chain {a, b} where a <b; then
L=(0(P) is the three-element chain {(, a, ab} (Fig. 1).
Clearly | = la= and |ab=a (TableI).

TABLE 1

The Members of
O(P) sans Their
Maximal Elements

u
%] %]
a 1%}
ab a
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Hence % (L) is the lattice
{(g’ @)’ (Q’ a)’ (@’ ab)’ (a5 @)’ (a’ a)’ (a’ ab)’ (ab7 a)’ (ab’ ab)}

(Fig. 2).
The lattice % (L) has 52 elements, which we list in 2 X 2 matrix notation:

& 25 I8 2 2IE E 2)E DE o)
A A I G G G ) Ay
(5 NG w2 wE G
& 2o Do ale 206 2l 2)e 2o &)
& oo o ale )G o6 e o )
o w) GO0 ale D o)

(0 o o o o)
(o % ) 9 o)

ExAMPLE 4.9. Let P be the three-element fence {a, b, ¢} where b>a<
c; then L=((P) is the lattice {(, a, ab, ac, abc} (Fig. 3).

Clearly l@ la= & and lab lac = labc =g (Table IT).

Then (L) is the lattice {5, a} x LU {ab, ac,abc} x{a, ab, ac, abc}
(Fig. 4).

~_
A

ExampPLE 4.10. Let Q be the four-element fence {w, x, y, z}, where w <
x> y<z; then M=0(Q) is the lattice {&, w, y, wy, yz, wxy, wyz, wxyz}
(Fig. 5).

Clearly I@ = 1w = ly = 1wy =, Iyz = 1wyz =y, and way = 1wxyz =
wy (Table III).
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(a, ab) (ab,a)
(0, ab) (a,a)

(0,a) (a,0)
(0,0)

FIG. 2. The lattice % (L).

abe
ab ac
b ¢ a
hve ;
P L

FIG. 3. The poset P and the lattice L = ()(P).

TABLE 11

The Members of
O(P) sans Their
Maximal Elements

U U
[0} %)
a %)
ab a

ac
abc a
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TABLE III

The Members of
0(Q) sans Theirs
Maximal Elements

o
[0} [0}
y 6]
yz y
w %)
wy %)
wyz y
wxy wy
wxyz wy

Thus ¥ (M) has 52 elements:
09 @y @) Ow) Ouwy) (Bwyz) (Duwry) (Bwzryz)

10 (vy) (yy2) (Bw) (Gwy) (ywy:) (ywsy) (y,wry?)

(yz,9)  (yz,y2) (yzywy)  (yzwyz) (yzowoy) (yz,wryz)

(w,0) (wyy) (wyz) (ww) (wwy) (wwyz) (wwry) (wwryz)
(wy,0) (wyy) (wyyz) (wy,w) (wy,wy) (wywyz) (wywzry) (wyweyz)
(wyz,y) (wyz,y2) (wyz,wy) (wyz,wyz) (wyz,wey) (wyz,wryz)
(wry,wy) (wry,wyz) (wey,wzy) (wzywryz)

(weyz,wy) (wzyz,wyz) (wryz,wzy) (wryz,wryz).

5. BOOLEAN FUNCTIONS ON THE LATTICE OF BOOLEAN
FUNCTIONS: THE SOLUTION TO GRATZER’S FIRST PROBLEM

In this section, we solve Problem 1 of Section 1, posed by Grétzer in
1964 (Corollary 5.6): The lattice S, (L) (for a bounded distributive lattice
L) is determined up to isomorphism by the lattice S, (L). Indeed, we prove
the surprising result that Sy, (L) is canonically isomorphic to S;(S,(L)),
the lattice of unary Boolean functions on the lattice of k-ary Boolean
functions of L (Theorem 5.5).

Recall that Pe P and L= (O(P).
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LEMMA 5.1. Let U:=(Uy)sear, V:i=(Vy)sea € % (L) be such that
[Us "V, Usl,
is a Boolean lattice whenever 9§, £€2* and § <& Choose Wjye

[UsnV,, U, for all §e2F.
Then (W) zc o belongs to S (L).

Proof. Let J, £€2¥ be such that § <& Then
\WsclUscU,nV, W,
(using Note 4.3). |
COROLLARY 5.2. Let U:=(Uyp) oo, Vi=(Vy)ses € (L) be such that
LUsn Ve, Usl,

is a Boolean lattice whenever 0, &€ 2 and d <&,
Then

[U/\ 17, U]yk(L)

is a Boolean lattice.

Proof. Let
Wi:(Wg)gezk € [[7/\ 17, ﬁ]yk(L)-
Thus, for all &e2f W,e[U,n V., US],, so there exists W.e
[U;n V., U], such that W,n W.=U,nVyand W,u W,=U,.

By Lemma 5.1, W' :=(W}),.q, belongs to % (L); clearly WA W' =
UAnVand Wv W' =0U. |

LEMMA 5.3. Let Uy:=(Uzg)sear, Uy = (Us)geq € % (L) be such that

(Uy, U,) belongs to % (% (L)).
Then |Usg < Uz for all §, §€2* such that § <&.

Proof. Fix, J, £€2* such that 6 <& By Note 4.3,
[Ty A U, Uo]yk(L)

is a Boolean lattice.
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For all 77 2*, let

W .

7

_ Ug n Uy if 7<é
Usg otherwise.

Then W:=(W,7),7621c € % (L); indeed
WelU, n U, Uo]yk(L)'
Let W' = (W) e € % (L) be such that WAW =Uy AU, and Wv

W’ = (70.
Clearly W= Uz and Wiy=Uzg nUgz. Hence |Uszg < Uz. 1

LEMMA 5.4. Let Uy:=(Uzg)scars U, :=(Usp)seq € %(L) be such that
(U, Uy) belongs to % (%.(L)).
Then for all £€2¥, |Ug < Us.

Proof. Fix ée2* Tt suffices to prove that [Ug n Uz, Ug]l, is a
Boolean lattice. Let We[Ug n Uz, Uz ..
For all ije2*, let

Ug nUgx if 7<é
(Wy) =W if 7
Uy otherwise.
Then W :=( W) iea € %(L), and it lies in the Boolean interval
[ﬁo A Ula UO].Vk(L)-

Let W’:z(Wﬁi)ﬁezke%(L) be such that WA W' =U, A U, and W v
W' =U,. Clearly W W,=Uz n Uz and Wu Wi=Uzg. |

THEOREM 5.5. The lattices Sy (L) and S,(S,(L)) are isomorphic.
Define a map

®: % (L)~ K(HL))
as follows: for all (Ug)gcp+r € % 41 (L), let
D((Up)gezr+t) = (U )zeats (Ugp )sear).
Define a map

Y A (S (L) = Sy (L)
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as follows: for all (Ug)sczts (Usp)zear) € A1(H(L)), let

Y((UR )eert> (U )zert) = (Up)geaer.
Then @ and ¥ are mutually inverse order-isomorphisms.

Proof. By Corollary 5.2 and Note 4.3, @ is well defined. By Lemmas 5.3
and 5.4, ¥ is well defined. They are clearly order-preserving and inverses
to each other. ||

As a corollary, we solve Grétzer’s first problem ([ 3]; see Section 1):

COROLLARY 5.6. Let L, M eD be such that S;(L)=S,(M).
Then Sp(L)=Sy(M). 1

ExampLE 5.7. Let L be the three-element chain. In Example 4.8, we
computed S;(L) and S,(L). In Example 4.10, we computed S, (M), where
M=S8,(L). In both examples, we listed the elements of %(L) and
A (HA(L)). The isomorphism of Theorem 5.5 can be easily seen by turning
each 2 x 2 matrix of Example 4.8 into an ordered pair by grouping the rows
together and using the isomorphism S, (L)= M given by

(D, D)~
(J,a)—

(D, ab)'—>yz
(a, D) —>w
(a, a)—wy
(a, ab) — wyz
)
)

(ab, a) > wxy

(ab, ab) — wxy:z.

6. THE PRIESTLEY DUAL OF THE LATTICE
OF BOOLEAN FUNCTIONS:
THE SOLUTION TO GRATZER’S SECOND PROBLEM

In this section, we solve Problem 2 of Section 1 posed by Grétzer in 1964
and restated in 1978 in his influential book (Theorems 6.7 and 6.9): We
completely characterize the lattices that can arise as S, (L) or S(L) for a
bounded distributive lattice L. We do so in terms their Priestley spaces of
prime ideals.
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Recall that Pe P and L = (O(P).

NotE 6.1. Let p e P. The following are equivalent:

(1) p is normal,

(2) there exist U, Ve O(P) such that U\V is an antichain containing p;

(3) there exist WeO(P) and a clopen subset C of P such that
peCc Max W.

Proof. Note 4.3 gives the equivalence of (1) and (2) and the fact that
(2) implies (3). To show that (3) implies (2), let U, Ve O(P) be such that
pe U\V < C. Then U\V is an antichain. ||

LEMMA 6.2. Let p, g€ P and let 5, £€2¥. Assume that p <q and § > &.

Then I, s<1, ;.

Proof. Let (Uy)zex €1, 5. Then p ¢ Us. Assume for a contradiction that
qge U;. Then pe |U; and hence p € Uz, a contradiction. |

LEMMA 6.3. Let peP and let 5, £€2¥. Assume that p is special and that
0=¢&
Then I, s<=1

P&

Proof. Let (Uy);ca €1, 5. Then p¢ Us and lU-E Us, so, by Note 4.3,
U\ Us is an antichain. Hence p ¢ U,, by Note 6.1. |

LEMMA 6.4. Let p, g€ P and let 0, §€2*. Assume that 1,s<1, ;.
Then p <q.

Proof. Assume for a contradiction that p « ¢. Let Ue ((P) be such that
pé¢Uand ge U. Then (U);. €1, s\I, », a contradiction. [|

LEMMA 6.5. Let p, g€ P and let 5, £€ 2. Assume that I, s<1,
Then 0 =é.

Proof. Assume for a contradiction that § 3 & For all 72, let
P if 7=¢8

U; = 4 .

%) otherwise.

Then (Uy)eax €1, 5\, &, a contradiction. ||

LEMMA 6.6. Let pe P and let 0, &€2*. Assume that 1, s <1, ; where
O#E.
Then p is special.
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Proof. By Lemma 6.5, § > &,
Assume, for a contradiction, that p is normal. By Notes 4.3 and 6.1, there
exist U, Ve O(P) such that pe U\V and |[U< V. For all ije2*, let

vooif
W”'_{U if

= 3
AR\
Q”ln |

Then (W;);eat €1, 5\I, ;. a contradiction. ||

THEOREM 6.7. The Priestley space of S, (L) is order-homeomorphic to
the ordered space P x 2F.

Define the order-homeomorphism ®: P(S,(L)) — Px2* as follows: for all
peP, ge2X let &(I, ;)= (p,&).

Proof. By Lemmas 6.4 and 6.5, @ is well defined and order-preserving.
By Lemmas 6.2 and 6.3, @ is an order-embedding.

Obviously @ is onto. Hence @ is an order-isomorphism.
To prove that @ is a homeomorphism, let

. P(L*) > P(%(L))

be the function sending {(U,);cqx € L* |p¢ U} to I, forall peP, ge2*
We know that ¥ is continuous. It is also a bijection. Since Priestley spaces
are compact and Hausdorff, ¥ is a homeomorphism (see, for instance, [ 1],
Lemma 10.7A). ||

After seeing Theorem 6.7 for finite lattices, M. Mar6ti made the following
observation:

COROLLARY 6.8. If L is finite, then ( #(S,(L)), <) is isomorphic to
(J(L), <)x (25 <),

THEOREM 6.9. The Priestley space of S(L) is order-homeomorphic to
Px 2N,

Proof. Clearly Px 2N is a Priestley space. For all ke N, let

m: Px 2N - Pix 2K
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be the obvious projection; similarly, define =,,: Px2'— Px 2% for all k,
/e N such that k</.

We verify that (Px 2"V, (m;: Px 2N —» Px2%),_ ) is the inverse limit of
the directed system

(Px25)oq, (mpg: PX 2> Px25) )

in the category of Priestley spaces. ||

ExaMPLE 6.10. Let P be the two-element chain {a, b} of Example 4.8
and let L =0(P) (Fig. 1). Figure 6 shows Px2 and Px 2.

Note that P2 is order-isomorphic to #(S,(L)), so that O(Px2)=
S, (L) (Figs.2 and 7).

Figure 8 shows P, 22, Px 22 and Px22%

ExaMPLE 6.11 Let P be the three-element fence {a, b, ¢} of Example
49 and let L= 0(P) (Fig. 3). Figure 9 shows P, Px2, and Px2.

Note that Px 2 is order-isomorphic to #(S;(L)), so that O(Px2)=
S, (L) (Figs. 4 and 10).

Indeed, #(S1(L))={(. a), (. ab), (&, ac), (a, &), (ab, &), (ac, &)}

ExaMPLE 6.12. Let Q be the four-element fence {w, x, y, z} of
Example 4.10 and let M = 0(Q) (Fig. 5). Figures 11 and 12 show Q, Q0 x 2,
and QO x 2.

Let P be the two-element chain of Example 6.10. Note that Q= Px 2
and that Qx 2~ (P x 2)x 2 is order-isomorphic to P x 22 (Fig. 8) under the
isomorphism

(w,0) — (a, o)
(x,0)— (b, a)
(3, 0)—(a, 0)
(z,0)— (b, 0)
(w, 1)~ (a, 1)
(x, 1) (b, 1)
(3, D)= (a, B)
(2, 1) = (b, ).
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(b,1) (b,1)
i (b,O)Qw, D60 (@)
@ (a,0) (a,0)

P Px2 Px2
FIG. 6. The posets P, Px2, and Px 2.

&

FIG. 7. The lattice S,(L) and the poset #(S,(L)).

o(b:1) (6:1)
(a,1)
1 (be) H(b,8) (b,) (5,8)
b o 8 (a,a) 4 > (a,8) (a,@) (a,8)
I (,0)
a 0 (a,0) (a,0)
P 2? P x2* P x 2?

(a,0)

Px2 Px2
FIG. 9. The posets P, Px2, and Px2.
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FIG. 12. The poset Q x 2.
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7. RECOVERING THE LATTICE FROM THE LATTICE
OF BOOLEAN FUNCTIONS

In this section, we address Gréitzer’s remaining problem (see Section 1):
We prove that a finite distributive lattice L is determined by its lattice of
k-ary Boolean functions (Theorem 7.1), but not by the lattice of a// Boolean
functions (Note 7.2).

THEOREM 7.1. Let L, M be finite distributive lattices such that S, (L) =
Si(M).
Then L= M.

Proof. Let P:=_¢(L) and let Q:= ¢(M). By Theorem6.7 and
Corollary 6.8, Px2¥~Qx2* so that (P, <)x(2K <)=(0Q, <)x
(2%, <). By [7], Theorem 3, (P, <)=(Q, <), so that P~ Q and hence
L=M. |

Note 7.2. Let L be a nontrivial finite distributive lattice. Let .4 be the
family of finite lattices

{Se(L) | k=>1}.

Then S(L)~S(M) for any Me ., but no two lattices in 4 are
isomorphic.

Proof. The observation follows from Theorem 7.1 and the fact that, for
any NeD, S(N) is a limit of {S,(N)|k>1} in the category D. |
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