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Let L be a bounded distributive lattice. For k�1, let Sk (L) be the lattice of k-ary
functions on L with the congruence substitution property (Boolean functions); let
S(L) be the lattice of all Boolean functions. The lattices that can arise as Sk (L) or
S(L) for some bounded distributive lattice L are characterized in terms of their
Priestley spaces of prime ideals. For bounded distributive lattices L and M, it is
shown that S1 (L)$S1 (M) implies Sk (L)$Sk (M). If L and M are finite, then
Sk (L)$Sk (M) implies L$M. Some problems of Gra� tzer dating to 1964 are thus
solved. � 2000 Academic Press

Key Words: (bounded) distributive lattice; (partially) ordered topological space;
Priestley duality; congruence substitution property; Boolean function; affine com-
pleteness; function lattice.

1. THE PROBLEM

Let L be a bounded distributive lattice and let k�1. A function
f : Lk � L has the congruence substitution property if, for every congruence
% of L, and all (a1 , b1), ..., (ak , bk) # %, we have f (a1 , ..., ak) %f (b1 , ..., bk).
The set of all such functions forms a bounded distributive lattice, denoted
Sk (L) (also called the lattice of Boolean functions in [3]). Let S(L) be the
lattice of all Boolean functions of finite arity (on the variables x1 , x2 , ...).

Gra� tzer has proposed the following problems [3]:

Problem 1 (Gra� tzer, 1964). Let L and M be bounded distributive lat-
tices such that S1 (L)$S1 (M).

Is Sk (L) necessarily isomorphic to Sk (M)?
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Problem 2 (Gra� tzer, 1964). Characterize those lattices isomorphic to
Sk (L) or S(L) for some bounded distributive lattice L.

(See also General Lattice Theory [4], Problem II.14.)
We solve both of these problems (Corollary 5.6, Theorem 6.7, and

Theorem 6.9).
Gra� tzer has also proposed the following problem [3]: Given a bounded

distributive lattice L, find every bounded distributive lattice M such that
Sk (L)$Sk (M) (or such that S(L)$S(M)). (In General Lattice Theory
[4], Problem II.13, he asks: To what extent do S(L) and Sk (L) determine
the structure of L?)

We prove that, for a finite distributive lattice L, Sk (L) fully determines
L; but there are infinitely many pairwise nonisomorphic finite distributive
lattices L1 , L2 , ... such that S(L)$S(Ln) (Theorem 7.1 and Note 7.2).

Along the way, we completely classify the Boolean functions on a bounded
distributive lattice L (Theorem 4.7). Our central result is that S1 (Sk (L)) is
canonically isomorphic to Sk+1 (L) (Theorem 5.5).

Our proofs rely heavily on Priestley duality for distributive lattices.

2. HISTORICAL BACKGROUND

Functions on a general algebra with the congruence substitution
property are the focus of the theory of affine completeness. (See, for
instance, [6].)

It is obvious that every lattice polynomial on a bounded distributive lat-
tice has the congruence substitution property, as does every Boolean
algebra polynomial on a Boolean lattice. (For instance, (x 7y) 6

z$ # S3 (L) if L is Boolean). Gra� tzer proved the converse ([2], Theorem 1):
Every function on a Boolean lattice with the congruence substitution property
is a Boolean algebra polynomial (hence the term ``Boolean function''). He
also characterized those bounded distributive lattices such that every
Boolean function is a lattice polynomial ([3], Corollary 3).

The key result for our purposes is the following

Theorem [3]. Let L be a bounded distributive lattice with least element
0L and greatest element 1L . Let k�1 and let 2 :=[0L , 1L].

For all f : Lk � L, let ,f : 2k � L be the restriction of f to 2k.

(1) For all f, g # Sk (L), f =g if and only if ,f=,g .

(2) Let ,: 2k � L. There exists f # Sk (L) such that ,=,f if and only
if the interval [,(b9 ), ,(a� ) 6 ,(b9 )] is a Boolean lattice for all a� , b9 # 2k such
that a� <b9 .
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3. MATHEMATICAL BACKGROUND, TERMINOLOGY, AND
NOTATION (A PRIMER ON PRIESTLEY DUALITY)

The central reference is [1].
Let L be a bounded distributive lattice; let 2 :=[0L , 1L], where 0L is the

least element of L and 1L is the greatest element. For a, b # L, where a�b,
let [a, b]L be the interval [c # L | a�c�b]. Let Con L be the congruence
lattice of L. For % # Con L and a, b # L, we write a%b if (a, b) # %.

For k�1, a function f : Lk � L has the congruence substitution property
if, for all % # Con L and all a1 , b1 , ..., ak , bk # L, ai %bi (i=1, ..., k) implies
f (a1 , ..., ak) %f (b1 , ..., bk). The (bounded distributive) lattice of all such
functions, also called the k-ary Boolean functions, is denoted Sk (L).

If we view the members of Sk (L) as functions depending on the variables
x1 , ..., xk , we can take the union

.
�

k=1

Sk (L)

to get the (bounded distributive) lattice S(L) of all (finitary) Boolean
functions.

Let P be a poset. A down-set of P is a subset U�P such that, for all
p # P and u # U, p�u implies that p # U. The poset of clopen down-sets of
an ordered topological space P, partially ordered by inclusion, is a boun-
ded distributive lattice, denoted O(P). (Meet is intersection, join is union,
0O(P) is <, and 1O(P) is P.)

A Priestley space P is a compact (partially) ordered topological space
such that, for p, q # P, p�� q implies that p � U and q # U for some U # O(P).
Given a bounded distributive lattice L, the poset P(L) of prime ideals
forms a Priestley space, with the subbasis

[[I # P(L) | a # I], [I # P(L) | a � I] | a # L].

It is well known that L is isomorphic to O(P(L)) via the map

a [ Ua :=[I # P(L) | a � I].

It is also well known that every Priestley space P is order-homeomorphic
(i.e., order-isomorphic and homeomorphic via the same function) to
P(O(P)) by the map

p [ Ip :=[U # O(P) | p � U].

Indeed, the category D of bounded distributive lattices with [0, 1]-preserving
homomorphisms is dually equivalent to the category P of Priestley spaces
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with continuous order-preserving maps. [If L is a finite distributive lattice,
and J(L) is its poset of join-irreducibles, then L$O(J(L)). If P is a finite
poset, then P$J(O(P)).]

Under the dual equivalence functor, a map f : L � M in D corresponds
to the map ,: P(M) � P(L) in P given by ,(J)= f &1 (J) for all J # P(M).
Similarly, a map ,: P � Q in P corresponds to the map f : O(Q) � O(P) in
D given by f (V)=,&1 (V) for all V # O(Q). (See [8]; [1], 10.25.)

If L, M # D, every prime ideal of L_M is of the form I_M or L_J,
where I # P(L) and J # P(M) ([1], Exercise 9.3). If M is a [0, 1]-sublattice
of L # D, then every J # P(M) is of the form I & M for some I # P(L);
moreover, the function I [ I & M is a continuous order-preserving map
from P(L) onto P(M).

It is well known (Nachbin's Theorem, [4], Theorem II.1.22) that L # D
is Boolean if and only if P(L) is an antichain (that is, distinct elements are
incomparable).

In the sequel, let P # P and let L :=O(P).
Every clopen subset of P is a Priestley space; and for U, V # O(P),

O(U"V) is isomorphic to [U & V, U]. Every clopen subset of P # P is a
finite union of sets of the form U"V, where U, V # O(P).

For all Q�P, let %Q :=[(U, V) # L2 | U & Q=V & Q]; if Q is a singleton
[ p], we write %p . It is well known that Con L=[%Q | Q�P is closed]
([1], 10.27).

Given U�P, let a1 u :=[ p # P | p<u for some u # U]; let Max U be the
set of maximal elements of the poset U; let U0 :=P"U and let U1 :=U.

Let Sk (L) be the family of 2k-tuples

[(U=� )=� # 2k # L2k
| for all $9 , =� # 2k, $9 <=� implies a1 U$9 �U=� ].

(Note that Sk (L) is [0, 1]-sublattice of L2k
.)

For all p # P, =� # 2k, let

Ip, =� :=[(U'� )'� # 2k # Sk (L) | p � U=� ].

We know that P(Sk (L))=[Ip, =� | p # P, =� # 2k].
An element p # P is normal if there exist U, V # L such that p # U, p � V,

and [U & V, U] is a Boolean lattice; otherwise p is special. (Note that, if
L is finite, every p # P is normal.)

For any ordered topological space R, let P _ R be the ordered topologi-
cal space with underlying space P_R and partial ordering

� P _ R :=� P_R "[(( p, r), ( p, r$)) # (P_R)2 | p is normal and r{r$].
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We denote the i th component of =� # 2k by =i (1�i�k); =0
�

denotes the
element of 2k+1 such that

(=0
�

) i={=i

0
if 1�i�k,
if i=k+1.

Similarly, we define =1
�

# 2k+1; =� $ is the complement of =� in 2k.

4. THE LATTICE OF k-ARY BOOLEAN FUNCTIONS

In this section, we completely characterize the k-ary Boolean functions
on a bounded distributive lattice L (Theorem 4.7). In so doing, we obtain
Gra� tzer's result that every f # Sk (L) is determined by its restriction to 2k,
where 2 :=[0L , 1L]; we also obtain a new description of the functions
,: 2k � L that are restrictions of Boolean functions to 2k [easily seen to be
equivalent to Gra� tzer's ([3], Theorem)].

In the sequel, let P be a Priestley space and let L be the bounded
distributive lattice O(P).

We begin with some trivial observations.

Note 4.1. Let U # O(P). Then a1 U=U"Max U.

Proof. Every clopen subset of P is in P, and so corresponds to the
poset of prime ideals of some bounded distributive lattice. By Zorn's
Lemma, every prime ideal in such a lattice is contained in a maximal
lattice. K

Lemma 4.2. Let U, V, Q�P. Then U & Q=V & Q implies

(P"U) & Q=(P"V) & Q.

Note 4.3. Let U, V # O(P). The following are equivalent:

(1) a1 U�V;

(2) U"V is an antichain;

(3) [U & V, U]L is a Boolean lattice;

(4) [V, U _ V]L is a Boolean lattice.

Proof. Clearly (1) is equivalent to (2), (2) is equivalent to (3), and (3)
is equivalent to (4). K
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Lemma 4.4. Let f # Sk (L). Then for all U1 , ..., Uk # L,

f (U1 , ..., Uk)= .
=� # 2k

,
k

i=1

f (=� ) & U =i
i .

Proof. Let p # P; let U1 , ..., Uk # O(P).
For i=1, ..., k, let

=i={1
0

if p # Ui ,
if p � Ui

(so that p # U =i
i and U i%p=i). Hence p # f (U1 , ..., Uk) if and only if

p # f (=1 , ..., =k).
Now assume that p # �k

i=1 f (=� ) & U =i
i for some =� # 2k. Then Ui %p=i for

i=1, ..., k, so that f (U1 , ..., Uk) %p f (=� ) and hence p # f (U1 , ..., Uk). K

Lemma 4.5. Let f # Sk (L). Then ( f (=� ))=� # 2k is in Sk (L).

Proof. Let $9 , =� # 2k be such that $9 <=� . Assume for a contradiction that
a1 f ($9 )�3 f (=� ). Then there exist p, q # f ($9 ) such that p<q and p � f (=� ).

Let U # O(P) be such that p # U and q � U. Then U%p1L and U%q0L .
For i=1, ..., k, let

Ui :={U
$ i

if $ i<= i ,
otherwise,

so that Ui %p =i and U i%q $i .
Hence q # f (U1 , ..., Uk), so that p # f (U1 , ..., Uk); but

p � f (U1 , ..., Uk),

a contradiction. K

Lemma 4.6. Let (U=� )=� # 2k # Sk (L). Define f : Lk � L as follows: for
U1 , ..., Uk # L, let

f (U1 , ..., Uk) := .
=� # 2k

,
k

i=1

U=� & U =i
i .

Then f # Sk (L) and, for all =� # 2k, f (=� )=U=� .

Proof. First we show that f is well defined. Let U1 , ..., Uk # L. Clearly
f (U1 , ..., Uk) is a clopen subset of P. Let p, q # P be such that p<q where
q # f (U1 , ..., Uk). We must show that p # f (U1 , ..., Uk).
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Assume not, for a contradiction. There exists $9 # 2k such that

q # ,
k

i=1

U$9 & U $i
i .

For i=1, ..., k, let

=i :={$ i

1
if p # U $i

i ,
otherwise.

For some j # [1, ..., k], $j=0 and =j=1 (or else

p # ,
k

i=1

U$9 & U $i
i ,

a contradiction). Hence $9 <=� . Thus p # U=� ; and since

p # ,
k

i=1

U=� & U =i
i ,

we have p # f (U1 , ..., Uk), a contradiction. Hence f : Lk � L is well defined.
Clearly f # Sk (L). (See Lemma 4.2.)

Finally, let =� # 2k. We will show that f (=� )=U=� . Certainly ==i
i =P for

i=1, ..., k, so

,
k

i=1

U=� & ==i
i =U=� .

Now let $9 # 2k be distinct from =� . Then there exists i # [1, ..., k] such that
$i {=i . If $i=0 and =i=1, we have =$i

i =<. If $i=1 and =i=0, we have
=$i

i =<. Hence

,
k

i=1

U$9 & =$i
i =<.

Thus f (=� )=U=� . K

The main theorem of this section provides an alternate, unified proof of
both [2], Theorem 1 and [3], Theorem. (Note the similarity with [5],
Theorem 2.41, which the author came across after proving the main
theorem: [5], Theorem 2.41 deals with normal forms for propositional for-
mulas.) Our result extends these theorems by explicitly describing all
possible k-ary Boolean functions.
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FIG. 1. The poset P and the lattice L=O(P).

Theorem 4.7. The lattices Sk (L) and Sk (L) are isomorphic.
Define a map 8: Sk (L) � Sk (L) as follows: for all f # Sk (L), let

8( f ) :=( f (=� ))=� # 2k .

Define a map 9: Sk (L) � Sk (L) as follows: for all (U=� )=� # 2k # Sk (L), let
9((U=� )=� # 2k): Lk � L be the function defined for all U1 , ..., Uk # L by

9((U=� )=� # 2k)(U1 , ..., Uk) := .
=� # 2k

,
k

i=1

U=� & U =i
i .

Then 8 and 9 are mutually inverse order-isomorphisms.

Proof. The theorem follows from Lemmas 4.4�4.6. K

The theorem implies that the generic unary Boolean function f : L � L is
given by

f (U)=(U0"U) _ (U1 & U),

where U0 , U1 # L are such that a1 U0 �U1 .

Example 4.8. Let P be the two-element chain [a, b] where a<b; then
L=O(P) is the three-element chain [<, a, ab] (Fig. 1).

Clearly a1 <=a1 a=< and a1 ab=a (Table I).

TABLE I

The Members of
O(P) sans Their

Maximal Elements

U a1 U

< <
a <

ab a
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Hence S1 (L) is the lattice

[(<, <), (<, a), (<, ab), (a, <), (a, a), (a, ab), (ab, a), (ab, ab)]

(Fig. 2).
The lattice S2 (L) has 52 elements, which we list in 2_2 matrix notation:

\<
<

<
<+\<

<
<
a +\<

<
<
ab+\<

a
<
<+\<

a
<
a +\<

a
<
ab+\<

ab
<
a +\<

ab
<
ab+

\<
<

a
<+\<

<
a
a+\<

<
a
ab+\<

a
a
<+\<

a
a
a+\<

a
a
ab+\<

ab
a
a+\<

ab
a
ab+

\<
<

ab
a +\<

<
ab
ab+ \<

a
ab
a +\<

a
ab
ab+\<

ab
ab
a +\<

ab
ab
ab+

\ a
<

<
<+\ a

<
<
a +\ a

<
<
ab+\a

a
<
<+\a

a
<
a +\a

a
<
ab+\ a

ab
<
a +\ a

ab
<
ab+

\ a
<

a
<+\ a

<
a
a+\ a

<
a
ab+\a

a
a
<+\a

a
a
a+\a

a
a
ab+\ a

ab
a
a+\ a

ab
a
ab+

\ a
<

ab
a +\ a

<
ab
ab+ \a

a
ab
a +\a

a
ab
ab+\ a

ab
ab
a +\ a

ab
ab
ab+

\ab
a

a
a+\ab

a
a
ab+\ab

ab
a
a+\ab

ab
a
ab+

\ab
a

ab
a +\ab

a
ab
ab+\ab

ab
ab
a +\ab

ab
ab
ab+

Example 4.9. Let P be the three-element fence [a, b, c] where b>a<
c; then L=O(P) is the lattice [<, a, ab, ac, abc] (Fig. 3).

Clearly a1 <=a1 a=< and a1 ab=a1 ac=a1 abc=a (Table II).
Then S1 (L) is the lattice [<, a]_L _ [ab, ac, abc]_[a, ab, ac, abc]

(Fig. 4).

Example 4.10. Let Q be the four-element fence [w, x, y, z], where w<
x> y<z; then M=O(Q) is the lattice [<, w, y, wy, yz, wxy, wyz, wxyz]
(Fig. 5).

Clearly a1 <=a1 w=a1 y=a1 wy=<, a1 yz=a1 wyz= y, and a1 wxy=a1 wxyz=
wy (Table III).
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FIG. 2. The lattice S1 (L).

FIG. 3. The poset P and the lattice L=O(P).

TABLE II

The Members of
O(P) sans Their

Maximal Elements

U a1 U

< <
a <

ab a
ac a

abc a
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FIG. 4. The lattice S1 (L).

FIG. 5. The poset Q and the lattice M=O(Q).
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TABLE III

The Members of
O(Q) sans Theirs

Maximal Elements

U a1 U

< <
y <
yz y
w <

wy <
wyz y
wxy wy
wxyz wy

Thus S1 (M) has 52 elements:

5. BOOLEAN FUNCTIONS ON THE LATTICE OF BOOLEAN
FUNCTIONS: THE SOLUTION TO GRA� TZER'S FIRST PROBLEM

In this section, we solve Problem 1 of Section 1, posed by Gra� tzer in
1964 (Corollary 5.6): The lattice Sk (L) (for a bounded distributive lattice
L) is determined up to isomorphism by the lattice S1 (L). Indeed, we prove
the surprising result that Sk+1 (L) is canonically isomorphic to S1 (Sk (L)),
the lattice of unary Boolean functions on the lattice of k-ary Boolean
functions of L (Theorem 5.5).

Recall that P # P and L=O(P).
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Lemma 5.1. Let U9 :=(U=� )=� # 2k , V9 :=(V=� )=� # 2k # Sk (L) be such that

[U$9 & V=� , U$9 ]L

is a Boolean lattice whenever $9 , =� # 2k and $9 < =� . Choose W=� #
[U=� & V=� , U=� ]L for all =� # 2k.

Then (W=� )=� # 2k belongs to Sk (L).

Proof. Let $9 , =� # 2k be such that $9 <=� . Then

a1 W$9 �a1 U$9 �U=� & V=� �W=�

(using Note 4.3). K

Corollary 5.2. Let U9 :=(U=� )=� # 2k , V9 :=(V=� )=� # 2k # Sk (L) be such that

[U$9 & V=� , U$9 ]L

is a Boolean lattice whenever $9 , =� # 2k and $9 �=� .
Then

[U9 7 V9 , U9 ]Sk(L)

is a Boolean lattice.

Proof. Let

W9 :=(W=� )=� # 2k # [U9 7 V9 , U9 ]Sk(L) .

Thus, for all =� # 2k, W=� # [U=� & V=� , U=� ]L , so there exists W$=� #
[U=� & V=� , U=� ]L such that W=� & W$=� =U=� & V=� and W=� _ W$=� =U=� .

By Lemma 5.1, W9 $ :=(W$=� )=� # 2k , belongs to Sk (L); clearly W9 7 W9 $=
U9 7 V9 and W9 6 W9 $=U9 . K

Lemma 5.3. Let U9 0 :=(U=0
�)=� # 2k , U9 1 :=(U=1

�)=� # 2k # Sk (L) be such that
(U9 0 , U9 1) belongs to S1 (Sk (L)).

Then a1 U$0
� �U=1

� for all $9 , =� # 2k such that $9 <=� .

Proof. Fix, $9 , =� # 2k such that $9 <=� . By Note 4.3,

[U9 0 7 U9 1 , U9 0]Sk(L)

is a Boolean lattice.
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For all '� # 2k, let

W'� :={U'0
� & U'1

�

U'0
�

if '� <=�
otherwise.

Then W9 :=(W'� )'� # 2k # Sk (L); indeed

W9 # [U9 0 7 U9 1 , U9 0]Sk(L) .

Let W9 $ :=(W$'� )'� # 2k # Sk (L) be such that W9 7 W9 $=U9 0 7 U9 1 and W9 6

W9 $=U9 0 .
Clearly W$$9 =U$0

� and W$=� =U=0
� & U=1

� . Hence a1 U$0
� �U=1

� . K

Lemma 5.4. Let U9 0 :=(U=0
�)=� # 2k , U9 1 :=(U=1

�)=� # 2k # Sk(L) be such that
(U9 0 , U9 1) belongs to S1 (Sk (L)).

Then for all =� # 2k, a1 U=0
� �U=1

� .

Proof. Fix =� # 2k. It suffices to prove that [U=0
� & U=1

� , U=0
�]L is a

Boolean lattice. Let W # [U=0
� & U=1

�, U=0
�]L .

For all '� # 2k, let

U'0
� & U'1

� if '� <=� ,

(W'� ) :={W if '� ==�

U'0
� otherwise.

Then W9 :=(W'� )'� # 2k # Sk (L), and it lies in the Boolean interval

[U9 0 7 U9 1 , U9 0]Sk(L) .

Let W9 $ :=(W$'� )'� # 2k # Sk (L) be such that W9 7 W9 $=U9 0 7 U9 1 and W9 6

W9 $=U9 0 . Clearly W & W$=� =U=0
� & U=1

� and W _ W$=� =U=0
� . K

Theorem 5.5. The lattices Sk+1 (L) and S1 (Sk (L)) are isomorphic.
Define a map

8: Sk+1 (L) � S1 (Sk (L))

as follows: for all (U 9̀ ) 9̀ # 2k+1 # Sk+1 (L), let

8((U 9̀ ) 9̀ # 2k+1)=((U=0
�)=� # 2k , (U=1

�)=� # 2k).

Define a map

9: S1 (Sk (L)) � Sk+1 (L)
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as follows: for all ((U=0
�)=� # 2k , (U=1

�)=� # 2k) # S1 (Sk (L)), let

9((U=0
�)=� # 2k , (U=1

�)=� # 2k)=(U 9̀ ) 9̀ # 2k+1 .

Then 8 and 9 are mutually inverse order-isomorphisms.

Proof. By Corollary 5.2 and Note 4.3, 8 is well defined. By Lemmas 5.3
and 5.4, 9 is well defined. They are clearly order-preserving and inverses
to each other. K

As a corollary, we solve Gra� tzer's first problem ([3]; see Section 1):

Corollary 5.6. Let L, M # D be such that S1 (L)$S1 (M).
Then Sk (L)$Sk (M). K

Example 5.7. Let L be the three-element chain. In Example 4.8, we
computed S1 (L) and S2 (L). In Example 4.10, we computed S1 (M), where
M$S1 (L). In both examples, we listed the elements of S2 (L) and
S1 (S1 (L)). The isomorphism of Theorem 5.5 can be easily seen by turning
each 2_2 matrix of Example 4.8 into an ordered pair by grouping the rows
together and using the isomorphism S1 (L)$M given by

(<, <) [ <

(<, a) [ y

(<, ab) [ yz

(a, <) [ w

(a, a) [ wy

(a, ab) [ wyz

(ab, a) [ wxy

(ab, ab) [ wxyz.

6. THE PRIESTLEY DUAL OF THE LATTICE
OF BOOLEAN FUNCTIONS:

THE SOLUTION TO GRA� TZER'S SECOND PROBLEM

In this section, we solve Problem 2 of Section 1 posed by Gra� tzer in 1964
and restated in 1978 in his influential book (Theorems 6.7 and 6.9): We
completely characterize the lattices that can arise as Sk (L) or S(L) for a
bounded distributive lattice L. We do so in terms their Priestley spaces of
prime ideals.
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Recall that P # P and L=O(P).

Note 6.1. Let p # P. The following are equivalent:

(1) p is normal;
(2) there exist U, V # O(P) such that U"V is an antichain containing p;

(3) there exist W # O(P) and a clopen subset C of P such that
p # C�Max W.

Proof. Note 4.3 gives the equivalence of (1) and (2) and the fact that
(2) implies (3). To show that (3) implies (2), let U, V # O(P) be such that
p # U"V�C. Then U"V is an antichain. K

Lemma 6.2. Let p, q # P and let $9 , =� # 2k. Assume that p<q and $9 �=� .
Then Ip, $9 �Iq, =� .

Proof. Let (U'� )'� # 2k # Ip, $9 . Then p � U$9 . Assume for a contradiction that
q # U=� . Then p # a1 U=� and hence p # U$9 , a contradiction. K

Lemma 6.3. Let p # P and let $9 , =� # 2k. Assume that p is special and that
$9 �=� .

Then Ip, $9 �Ip, =� .

Proof. Let (U'� )'� # 2k # Ip, $9 . Then p � U$9 and a1 U=� �U$9 , so, by Note 4.3,
U=� "U$9 is an antichain. Hence p � U=� , by Note 6.1. K

Lemma 6.4. Let p, q # P and let $9 , =� # 2k. Assume that Ip, $9 �Iq, =� .
Then p�q.

Proof. Assume for a contradiction that p�� q. Let U # O(P) be such that
p � U and q # U. Then (U)'� # 2k # Ip, $9 "Iq, =� , a contradiction. K

Lemma 6.5. Let p, q # P and let $9 , =� # 2k. Assume that Ip, $9 �Iq, =� .
Then $9 �=� .

Proof. Assume for a contradiction that $9 �� =� . For all '� # 2k, let

U'� :={P
<

if '� �=� ,
otherwise.

Then (U'� )'� # 2k # Ip, $9 "Iq, =� , a contradiction. K

Lemma 6.6. Let p # P and let $9 , =� # 2k. Assume that Ip, $9 �Ip, =� where
$9 {=� .

Then p is special.
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Proof. By Lemma 6.5, $9 >=� .
Assume, for a contradiction, that p is normal. By Notes 4.3 and 6.1, there

exist U, V # O(P) such that p # U"V and a1 U�V. For all '� # 2k, let

W'� :={V
U

if '� �$9 ,
if '� �� $9 .

Then (W'� )'� # 2k # Ip, $9 "Ip, =� , a contradiction. K

Theorem 6.7. The Priestley space of Sk (L) is order-homeomorphic to
the ordered space P _ 2k.

Define the order-homeomorphism 8: P(Sk (L)) � P _ 2k as follows: for all
p # P, =� # 2k, let 8(Ip, =� )=( p, =� $).

Proof. By Lemmas 6.4 and 6.5, 8 is well defined and order-preserving.
By Lemmas 6.2 and 6.3, 8 is an order-embedding.

Obviously 8 is onto. Hence 8 is an order-isomorphism.
To prove that 8 is a homeomorphism, let

9: P(L2k
) � P(Sk (L))

be the function sending [(U=� )=� # 2k # L2k
| p � U=� ] to Ip, =� for all p # P, =� # 2k.

We know that 9 is continuous. It is also a bijection. Since Priestley spaces
are compact and Hausdorff, 9 is a homeomorphism (see, for instance, [1],
Lemma 10.7A). K

After seeing Theorem 6.7 for finite lattices, M. Maro� ti made the following
observation:

Corollary 6.8. If L is finite, then (J(Sk (L)), <) is isomorphic to

(J(L), <)_(2k, �).

Theorem 6.9. The Priestley space of S(L) is order-homeomorphic to
P _ 2N.

Proof. Clearly P _ 2N is a Priestley space. For all k # N, let

?k : P _ 2N � P _ 2k

209DISTRIBUTIVE LATTICES



be the obvious projection; similarly, define ?kl : P _ 2 l � P _ 2k for all k,
l # N such that k�l.

We verify that (P _ 2N, (?k : P _ 2N � P _ 2k)k�1) is the inverse limit of
the directed system

((P _ 2k)k�1 , (?kl : P _ 2l � P _ 2k)1�k�l)

in the category of Priestley spaces. K

Example 6.10. Let P be the two-element chain [a, b] of Example 4.8
and let L=O(P) (Fig. 1). Figure 6 shows P_2 and P _ 2.

Note that P _ 2 is order-isomorphic to J(S1 (L)), so that O(P _ 2)$

S1 (L) (Figs. 2 and 7).
Figure 8 shows P, 22, P_22, and P _ 22.

Example 6.11 Let P be the three-element fence [a, b, c] of Example
4.9 and let L=O(P) (Fig. 3). Figure 9 shows P, P_2, and P _ 2.

Note that P _ 2 is order-isomorphic to J(S1 (L)), so that O(P _ 2)$

S1 (L) (Figs. 4 and 10).
Indeed, J(S1 (L))=[(<, a), (<, ab), (<, ac), (a, <), (ab, <), (ac, <)].

Example 6.12. Let Q be the four-element fence [w, x, y, z] of
Example 4.10 and let M=O(Q) (Fig. 5). Figures 11 and 12 show Q, Q_2,
and Q _ 2.

Let P be the two-element chain of Example 6.10. Note that Q$P _ 2
and that Q _ 2$(P _ 2) _ 2 is order-isomorphic to P _ 22 (Fig. 8) under the
isomorphism

(w, 0) [ (a, :)

(x, 0) [ (b, :)

( y, 0) [ (a, 0)

(z, 0) [ (b, 0)

(w, 1) [ (a, 1)

(x, 1) [ (b, 1)

( y, 1) [ (a, ;)

(z, 1) [ (b, ;).
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FIG. 6. The posets P, P_2, and P _ 2.

FIG. 7. The lattice S1 (L) and the poset J(S1 (L)).

FIG 8. The posets P, 22, P_22, and P _ 22.

FIG. 9. The posets P, P_2, and P _ 2.
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FIG. 10. The lattice S1 (L) and the poset J(S1 (L)).

FIG. 11. The posets Q and Q_2.

FIG. 12. The poset Q _ 2.
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7. RECOVERING THE LATTICE FROM THE LATTICE
OF BOOLEAN FUNCTIONS

In this section, we address Gra� tzer's remaining problem (see Section 1):
We prove that a finite distributive lattice L is determined by its lattice of
k-ary Boolean functions (Theorem 7.1), but not by the lattice of all Boolean
functions (Note 7.2).

Theorem 7.1. Let L, M be finite distributive lattices such that Sk (L)$

Sk (M).
Then L$M.

Proof. Let P :=J(L) and let Q :=J(M). By Theorem 6.7 and
Corollary 6.8, P _ 2k$Q _ 2k, so that (P, <)_(2k, �)$(Q, <)_
(2k, �). By [7], Theorem 3, (P, <)$(Q, <), so that P$Q and hence
L$M. K

Note 7.2. Let L be a nontrivial finite distributive lattice. Let M be the
family of finite lattices

[Sk (L) | k�1].

Then S(L)$S(M) for any M # M, but no two lattices in M are
isomorphic.

Proof. The observation follows from Theorem 7.1 and the fact that, for
any N # D, S(N) is a limit of [Sk (N) | k�1] in the category D. K
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