Functions on Distributive Lattices with the Congruence Substitution Property: Some Problems of Grätzer from 1964

Jonathan David Farley¹

Department of Mathematics, Vanderbilt University, Nashville, Tennessee 37240

Received December 28, 1998; accepted March 9, 1999

Let *L* be a bounded distributive lattice. For $k \ge 1$, let $S_k(L)$ be the lattice of *k*-ary functions on *L* with the congruence substitution property (Boolean functions); let S(L) be the lattice of all Boolean functions. The lattices that can arise as $S_k(L)$ or S(L) for some bounded distributive lattice *L* are characterized in terms of their Priestley spaces of prime ideals. For bounded distributive lattices *L* and *M*, it is shown that $S_1(L) \cong S_1(M)$ implies $S_k(L) \cong S_k(M)$. If *L* and *M* are finite, then $S_k(L) \cong S_k(M)$ implies $L \cong M$. Some problems of Grätzer dating to 1964 are thus solved. © 2000 Academic Press

Key Words: (bounded) distributive lattice; (partially) ordered topological space; Priestley duality; congruence substitution property; Boolean function; affine completeness; function lattice.

1. THE PROBLEM

Let *L* be a bounded distributive lattice and let $k \ge 1$. A function $f: L^k \to L$ has the *congruence substitution property* if, for every congruence θ of *L*, and all $(a_1, b_1), ..., (a_k, b_k) \in \theta$, we have $f(a_1, ..., a_k) \theta f(b_1, ..., b_k)$. The set of all such functions forms a bounded distributive lattice, denoted $S_k(L)$ (also called the lattice of *Boolean* functions in [3]). Let S(L) be the lattice of all Boolean functions of finite arity (on the variables $x_1, x_2, ...)$.

Grätzer has proposed the following problems [3]:

PROBLEM 1 (Grätzer, 1964). Let L and M be bounded distributive lattices such that $S_1(L) \cong S_1(M)$. Is $S_k(L)$ necessarily isomorphic to $S_k(M)$?

¹ 1991 Mathematics Subject Classification. 06B10, 06D05, 06B05, 06B15, 06E15, 06B30, 06E30. The author thanks M. Maróti for an observation leading to a useful reformulation of Corollary 6.8.

PROBLEM 2 (Grätzer, 1964). Characterize those lattices isomorphic to $S_k(L)$ or S(L) for some bounded distributive lattice L.

(See also *General Lattice Theory* [4], Problem II.14.)

We solve both of these problems (Corollary 5.6, Theorem 6.7, and Theorem 6.9).

Grätzer has also proposed the following problem [3]: Given a bounded distributive lattice L, find every bounded distributive lattice M such that $S_k(L) \cong S_k(M)$ (or such that $S(L) \cong S(M)$). (In General Lattice Theory [4], Problem II.13, he asks: To what extent do S(L) and $S_k(L)$ determine the structure of L?)

We prove that, for a finite distributive lattice L, $S_k(L)$ fully determines L; but there are infinitely many pairwise nonisomorphic finite distributive lattices $L_1, L_2, ...$ such that $S(L) \cong S(L_n)$ (Theorem 7.1 and Note 7.2).

Along the way, we completely classify the Boolean functions on a bounded distributive lattice L (Theorem 4.7). Our central result is that $S_1(S_k(L))$ is canonically isomorphic to $S_{k+1}(L)$ (Theorem 5.5).

Our proofs rely heavily on Priestley duality for distributive lattices.

2. HISTORICAL BACKGROUND

Functions on a general algebra with the congruence substitution property are the focus of the theory of *affine completeness*. (See, for instance, [6].)

It is obvious that every lattice polynomial on a bounded distributive lattice has the congruence substitution property, as does every Boolean algebra polynomial on a Boolean lattice. (For instance, $(x \land y) \lor$ $z' \in S_3(L)$ if L is Boolean). Grätzer proved the converse ([2], Theorem 1): Every function on a Boolean lattice with the congruence substitution property is a Boolean algebra polynomial (hence the term "Boolean function"). He also characterized those bounded distributive lattices such that every Boolean function is a lattice polynomial ([3], Corollary 3).

The key result for our purposes is the following

THEOREM [3]. Let L be a bounded distributive lattice with least element 0_L and greatest element 1_L . Let $k \ge 1$ and let $\mathbf{2} := \{0_L, 1_L\}$. For all $f: L^k \to L$, let $\phi_f: \mathbf{2}^k \to L$ be the restriction of f to $\mathbf{2}^k$.

(1) For all $f, g \in S_k(L)$, f = g if and only if $\phi_f = \phi_g$.

(2) Let $\phi: \mathbf{2}^k \to L$. There exists $f \in S_k(L)$ such that $\phi = \phi_f$ if and only if the interval $[\phi(\vec{b}), \phi(\vec{a}) \lor \phi(\vec{b})]$ is a Boolean lattice for all $\vec{a}, \vec{b} \in \mathbf{2}^k$ such that $\vec{a} < \vec{b}$.

3. MATHEMATICAL BACKGROUND, TERMINOLOGY, AND NOTATION (A PRIMER ON PRIESTLEY DUALITY)

The central reference is [1].

Let *L* be a bounded distributive lattice; let $\mathbf{2} := \{0_L, 1_L\}$, where 0_L is the least element of *L* and 1_L is the greatest element. For *a*, $b \in L$, where $a \leq b$, let $[a, b]_L$ be the interval $\{c \in L \mid a \leq c \leq b\}$. Let Con *L* be the congruence lattice of *L*. For $\theta \in \text{Con } L$ and *a*, $b \in L$, we write $a\theta b$ if $(a, b) \in \theta$.

For $k \ge 1$, a function $f: L^k \to L$ has the congruence substitution property if, for all $\theta \in \text{Con } L$ and all $a_1, b_1, ..., a_k, b_k \in L$, $a_i \theta b_i$ (i = 1, ..., k) implies $f(a_1, ..., a_k) \theta f(b_1, ..., b_k)$. The (bounded distributive) lattice of all such functions, also called the k-ary Boolean functions, is denoted $S_k(L)$.

If we view the members of $S_k(L)$ as functions depending on the variables $x_1, ..., x_k$, we can take the union

$$\bigcup_{k=1}^{\infty} S_k(L)$$

to get the (bounded distributive) lattice S(L) of all (finitary) Boolean functions.

Let *P* be a poset. A *down-set* of *P* is a subset $U \subseteq P$ such that, for all $p \in P$ and $u \in U$, $p \leq u$ implies that $p \in U$. The poset of clopen down-sets of an ordered topological space *P*, partially ordered by inclusion, is a bounded distributive lattice, denoted $\mathcal{O}(P)$. (Meet is intersection, join is union, $0_{\mathcal{O}(P)}$ is \emptyset , and $1_{\mathcal{O}(P)}$ is *P*.)

A Priestley space P is a compact (partially) ordered topological space such that, for $p, q \in P, p \leq q$ implies that $p \notin U$ and $q \in U$ for some $U \in \mathcal{O}(P)$. Given a bounded distributive lattice L, the poset P(L) of prime ideals forms a Priestley space, with the subbasis

$$\{\{I \in P(L) \mid a \in I\}, \{I \in P(L) \mid a \notin I\} \mid a \in L\}.$$

It is well known that L is isomorphic to $\mathcal{O}(P(L))$ via the map

$$a \mapsto U_a := \{ I \in P(L) \mid a \notin I \}.$$

It is also well known that every Priestley space P is order-homeomorphic (i.e., order-isomorphic and homeomorphic via the same function) to $P(\mathcal{O}(P))$ by the map

$$p \mapsto I_p := \{ U \in \mathcal{O}(P) \mid p \notin U \}.$$

Indeed, the category **D** of bounded distributive lattices with $\{0, 1\}$ -preserving homomorphisms is dually equivalent to the category **P** of Priestley spaces

with continuous order-preserving maps. [If L is a finite distributive lattice, and $\mathscr{J}(L)$ is its poset of join-irreducibles, then $L \cong \mathscr{O}(\mathscr{J}(L))$. If P is a finite poset, then $P \cong \mathscr{J}(\mathscr{O}(P))$.]

Under the dual equivalence functor, a map $f: L \to M$ in **D** corresponds to the map $\phi: P(M) \to P(L)$ in **P** given by $\phi(J) = f^{-1}(J)$ for all $J \in P(M)$. Similarly, a map $\phi: P \to Q$ in **P** corresponds to the map $f: \mathcal{O}(Q) \to \mathcal{O}(P)$ in **D** given by $f(V) = \phi^{-1}(V)$ for all $V \in \mathcal{O}(Q)$. (See [8]; [1], 10.25.)

If L, $M \in \mathbf{D}$, every prime ideal of $L \times M$ is of the form $I \times M$ or $L \times J$, where $I \in P(L)$ and $J \in P(M)$ ([1], Exercise 9.3). If M is a $\{0, 1\}$ -sublattice of $L \in \mathbf{D}$, then every $J \in P(M)$ is of the form $I \cap M$ for some $I \in P(L)$; moreover, the function $I \mapsto I \cap M$ is a continuous order-preserving map from P(L) onto P(M).

It is well known (Nachbin's Theorem, [4], Theorem II.1.22) that $L \in \mathbf{D}$ is Boolean if and only if P(L) is an antichain (that is, distinct elements are incomparable).

In the sequel, let $P \in \mathbf{P}$ and let $L := \mathcal{O}(P)$.

Every clopen subset of P is a Priestley space; and for U, $V \in \mathcal{O}(P)$, $\mathcal{O}(U \setminus V)$ is isomorphic to $[U \cap V, U]$. Every clopen subset of $P \in \mathbf{P}$ is a finite union of sets of the form $U \setminus V$, where $U, V \in \mathcal{O}(P)$.

For all $Q \subseteq P$, let $\theta_Q := \{(U, V) \in L^2 \mid U \cap Q = V \cap Q\}$; if Q is a singleton $\{p\}$, we write θ_p . It is well known that Con $L = \{\theta_0 \mid Q \subseteq P \text{ is closed}\}$ ([1], 10.27).

Given $U \subseteq P$, let $\downarrow u := \{ p \in P \mid p < u \text{ for some } u \in U \}$; let Max U be the set of maximal elements of the poset U; let $U^0 := P \setminus U$ and let $U^1 := U$.

Let $\mathscr{G}_k(L)$ be the family of 2^k -tuples

$$\{(U_{\vec{e}})_{\vec{e} \in \mathbf{2}^k} \in L^{2^k} | \text{ for all } \vec{\delta}, \vec{e} \in \mathbf{2}^k, \vec{\delta} < \vec{e} \text{ implies } \bigcup U_{\vec{\delta}} \subseteq U_{\vec{e}} \}$$

(Note that $\mathscr{G}_k(L)$ is $\{0, 1\}$ -sublattice of L^{2^k} .) For all $p \in P$, $\vec{\varepsilon} \in 2^{\vec{k}}$, let

$$I_{p,\vec{\varepsilon}} := \left\{ (U_{\vec{\eta}})_{\vec{\eta} \in \mathbf{2}^k} \in \mathscr{S}_k(L) \mid p \notin U_{\vec{\varepsilon}} \right\}.$$

We know that $P(\mathscr{G}_k(L)) = \{I_{p,\vec{\varepsilon}} | p \in P, \vec{\varepsilon} \in \mathbf{2}^k\}.$

An element $p \in P$ is normal if there exist $U, V \in L$ such that $p \in U, p \notin V$, and $[U \cap V, U]$ is a Boolean lattice; otherwise p is special. (Note that, if *L* is finite, every $p \in P$ is normal.)

For any ordered topological space R, let $P \ltimes R$ be the ordered topological space with underlying space $P \times R$ and partial ordering

$$\leq_{P \ltimes R} := \leq_{P \times R} \setminus \{((p, r), (p, r')) \in (P \times R)^2 \mid p \text{ is normal and } r \neq r' \}.$$

We denote the *i*th component of $\vec{\varepsilon} \in \mathbf{2}^k$ by ε_i $(1 \le i \le k)$; $\vec{\varepsilon 0}$ denotes the element of $\mathbf{2}^{k+1}$ such that

$$(\overrightarrow{\varepsilon 0})_i = \begin{cases} \varepsilon_i & \text{if } 1 \leq i \leq k, \\ 0 & \text{if } i = k+1. \end{cases}$$

Similarly, we define $\overrightarrow{\varepsilon 1} \in \mathbf{2}^{k+1}$; $\vec{\varepsilon}'$ is the complement of $\vec{\varepsilon}$ in $\mathbf{2}^k$.

4. THE LATTICE OF k-ARY BOOLEAN FUNCTIONS

In this section, we completely characterize the k-ary Boolean functions on a bounded distributive lattice L (Theorem 4.7). In so doing, we obtain Grätzer's result that every $f \in S_k(L)$ is determined by its restriction to 2^k , where $2 := \{0_L, 1_L\}$; we also obtain a new description of the functions $\phi: 2^k \to L$ that are restrictions of Boolean functions to 2^k [easily seen to be equivalent to Grätzer's ([3], Theorem)].

In the sequel, let P be a Priestley space and let L be the bounded distributive lattice $\mathcal{O}(P)$.

We begin with some trivial observations.

NOTE 4.1. Let
$$U \in \mathcal{O}(P)$$
. Then $\downarrow U = U \setminus \text{Max } U$.

Proof. Every clopen subset of P is in \mathbf{P} , and so corresponds to the poset of prime ideals of some bounded distributive lattice. By Zorn's Lemma, every prime ideal in such a lattice is contained in a maximal lattice.

LEMMA 4.2. Let $U, V, Q \subseteq P$. Then $U \cap Q = V \cap Q$ implies

$$(P \setminus U) \cap Q = (P \setminus V) \cap Q.$$

NOTE 4.3. Let $U, V \in \mathcal{O}(P)$. The following are equivalent:

(1) $\downarrow U \subseteq V;$

- (2) $U \setminus V$ is an antichain;
- (3) $[U \cap V, U]_L$ is a Boolean lattice;
- (4) $[V, U \cup V]_L$ is a Boolean lattice.

Proof. Clearly (1) is equivalent to (2), (2) is equivalent to (3), and (3) is equivalent to (4). \blacksquare

LEMMA 4.4. Let $f \in S_k(L)$. Then for all $U_1, ..., U_k \in L$,

$$f(U_1, ..., U_k) = \bigcup_{\vec{\varepsilon} \in \mathbf{2}^k} \bigcap_{i=1}^k f(\vec{\varepsilon}) \cap U_i^{e_i}.$$

Proof. Let $p \in P$; let $U_1, ..., U_k \in \mathcal{O}(P)$. For i = 1, ..., k, let

$$\varepsilon_i = \begin{cases} 1 & \text{if } p \in U_i, \\ 0 & \text{if } p \notin U_i \end{cases}$$

(so that $p \in U_i^{\varepsilon_i}$ and $U_i \theta_p \varepsilon_i$). Hence $p \in f(U_1, ..., U_k)$ if and only if $p \in f(\varepsilon_1, ..., \varepsilon_k)$.

Now assume that $p \in \bigcap_{i=1}^{k} f(\vec{\varepsilon}) \cap U_i^{\varepsilon_i}$ for some $\vec{\varepsilon} \in \mathbf{2}^k$. Then $U_i \theta_p \varepsilon_i$ for i = 1, ..., k, so that $f(U_1, ..., U_k) \theta_p f(\vec{\varepsilon})$ and hence $p \in f(U_1, ..., U_k)$.

LEMMA 4.5. Let $f \in S_k(L)$. Then $(f(\vec{\varepsilon}))_{\vec{\varepsilon} \in 2^k}$ is in $\mathscr{G}_k(L)$.

Proof. Let $\vec{\delta}$, $\vec{\epsilon} \in \mathbf{2}^k$ be such that $\vec{\delta} < \vec{\epsilon}$. Assume for a contradiction that $\hat{\downarrow} f(\vec{\delta}) \not\subseteq f(\vec{\epsilon})$. Then there exist $p, q \in f(\vec{\delta})$ such that p < q and $p \notin f(\vec{\epsilon})$. Let $U \in \mathcal{O}(P)$ be such that $p \in U$ and $q \notin U$. Then $U\theta_p \mathbf{1}_L$ and $U\theta_q \mathbf{0}_L$. For i = 1, ..., k, let

$$U_i := \begin{cases} U & \text{if } \delta_i < \varepsilon_i, \\ \delta_i & \text{otherwise,} \end{cases}$$

so that $U_i \theta_p \varepsilon_i$ and $U_i \theta_q \delta_i$. Hence $q \in f(U_1, ..., U_k)$, so that $p \in f(U_1, ..., U_k)$; but

 $p \notin f(U_1, ..., U_k),$

a contradiction.

LEMMA 4.6. Let $(U_{\vec{e}})_{\vec{e} \in 2^k} \in \mathscr{S}_k(L)$. Define $f: L^k \to L$ as follows: for $U_1, ..., U_k \in L$, let

$$f(U_1, ..., U_k) := \bigcup_{\vec{\varepsilon} \in \mathbf{2}^k} \bigcap_{i=1}^{\kappa} U_{\vec{\varepsilon}} \cap U_i^{\varepsilon_i}.$$

1.

Then $f \in S_k(L)$ and, for all $\vec{\varepsilon} \in \mathbf{2}^k$, $f(\vec{\varepsilon}) = U_{\vec{\varepsilon}}$.

Proof. First we show that f is well defined. Let $U_1, ..., U_k \in L$. Clearly $f(U_1, ..., U_k)$ is a clopen subset of P. Let p, $q \in P$ be such that p < q where $q \in f(U_1, ..., U_k)$. We must show that $p \in f(U_1, ..., U_k)$.

Assume not, for a contradiction. There exists $\vec{\delta} \in \mathbf{2}^k$ such that

$$q \in \bigcap_{i=1}^k U_{\vec{\delta}} \cap U_i^{\delta_i}.$$

For i = 1, ..., k, let

$$\varepsilon_i := \begin{cases} \delta_i & \text{if } p \in U_i^{\delta_i}, \\ 1 & \text{otherwise.} \end{cases}$$

For some $j \in \{1, ..., k\}$, $\delta_j = 0$ and $\varepsilon_j = 1$ (or else

$$p \in \bigcap_{i=1}^k U_{\vec{\delta}} \cap U_i^{\delta_i},$$

a contradiction). Hence $\vec{\delta} < \vec{\epsilon}$. Thus $p \in U_{\vec{\epsilon}}$; and since

$$p \in \bigcap_{i=1}^k U_{\vec{\varepsilon}} \cap U_i^{\varepsilon_i},$$

we have $p \in f(U_1, ..., U_k)$, a contradiction. Hence $f: L^k \to L$ is well defined. Clearly $f \in S_k(L)$. (See Lemma 4.2.)

Finally, let $\vec{\varepsilon} \in \mathbf{2}^k$. We will show that $f(\vec{\varepsilon}) = U_{\vec{\varepsilon}}$. Certainly $\varepsilon_i^{\varepsilon_i} = P$ for i = 1, ..., k, so

$$\bigcap_{i=1}^{k} U_{\vec{\varepsilon}} \cap \varepsilon_{i}^{\varepsilon_{i}} = U_{\vec{\varepsilon}}.$$

Now let $\vec{\delta} \in \mathbf{2}^k$ be distinct from $\vec{\varepsilon}$. Then there exists $i \in \{1, ..., k\}$ such that $\delta_i \neq \varepsilon_i$. If $\delta_i = 0$ and $\varepsilon_i = 1$, we have $\varepsilon_i^{\delta_i} = \emptyset$. If $\delta_i = 1$ and $\varepsilon_i = 0$, we have $\varepsilon_i^{\delta_i} = \emptyset$. Hence

$$\bigcap_{i=1}^{k} U_{\vec{\delta}} \cap \varepsilon_{i}^{\delta_{i}} = \emptyset.$$

Thus $f(\vec{\varepsilon}) = U_{\vec{\varepsilon}}$.

The main theorem of this section provides an alternate, unified proof of both [2], Theorem 1 and [3], Theorem. (Note the similarity with [5], Theorem 2.41, which the author came across after proving the main theorem: [5], Theorem 2.41 deals with normal forms for propositional formulas.) Our result extends these theorems by explicitly describing all possible k-ary Boolean functions.

THEOREM 4.7. The lattices $S_k(L)$ and $\mathscr{G}_k(L)$ are isomorphic. Define a map $\Phi: S_k(L) \to \mathscr{G}_k(L)$ as follows: for all $f \in S_k(L)$, let

 $\Phi(f) := (f(\vec{\varepsilon}))_{\vec{\varepsilon} \in \mathbf{2}^k}.$

Define a map $\Psi: \mathscr{G}_k(L) \to S_k(L)$ as follows: for all $(U_{\vec{e}})_{\vec{e} \in 2^k} \in \mathscr{G}_k(L)$, let $\Psi((U_{\vec{e}})_{\vec{e} \in 2^k}): L^k \to L$ be the function defined for all $U_1, ..., U_k \in L$ by

$$\Psi((U_{\vec{\varepsilon}})_{\vec{\varepsilon}\in \mathbf{2}^k})(U_1,...,U_k) := \bigcup_{\vec{\varepsilon}\in \mathbf{2}^k} \bigcap_{i=1}^k U_{\vec{\varepsilon}} \cap U_i^{\varepsilon_i}.$$

Then Φ and Ψ are mutually inverse order-isomorphisms.

Proof. The theorem follows from Lemmas 4.4–4.6.

The theorem implies that the generic unary Boolean function $f: L \rightarrow L$ is given by

$$f(U) = (U_0 \setminus U) \cup (U_1 \cap U),$$

where U_0 , $U_1 \in L$ are such that $\downarrow U_0 \subseteq U_1$.

EXAMPLE 4.8. Let P be the two-element chain $\{a, b\}$ where a < b; then $L = \mathcal{O}(P)$ is the three-element chain $\{\emptyset, a, ab\}$ (Fig. 1). Clearly $\downarrow \emptyset = \downarrow a = \emptyset$ and $\downarrow ab = a$ (Table I).

TABLE I

The Members of $\mathcal{O}(P)$ sans Their Maximal Elements	
U	ĴU
Ø a ab	$\overset{\oslash}{\underset{a}{\otimes}}$

Hence $\mathscr{S}_1(L)$ is the lattice

$$\{(\varnothing, \varnothing), (\varnothing, a), (\varnothing, ab), (a, \varnothing), (a, a), (a, ab), (ab, a), (ab, ab)\}$$

(Fig. 2).

The lattice $\mathscr{G}_2(L)$ has 52 elements, which we list in 2×2 matrix notation:

$$\begin{pmatrix} \varnothing & \varnothing \\ \varnothing & \varnothing \end{pmatrix} \begin{pmatrix} \varnothing & \varnothing \\ \varnothing & a \end{pmatrix} \begin{pmatrix} \varnothing & \varnothing \\ \varnothing & ab \end{pmatrix} \begin{pmatrix} \varnothing & \varnothing \\ a & \emptyset \end{pmatrix} \begin{pmatrix} \varnothing & \varphi \\ a & \emptyset \end{pmatrix} \begin{pmatrix} \varnothing & a \\ \emptyset & ab \end{pmatrix} \begin{pmatrix} \varnothing & a \\ \varphi & \emptyset \end{pmatrix} \begin{pmatrix} \varnothing & a \\ \emptyset & ab \end{pmatrix} \begin{pmatrix} \varnothing & a \\ \varphi & ab \end{pmatrix} \begin{pmatrix} \varnothing & a \\ \varphi & ab \end{pmatrix} \begin{pmatrix} \varnothing & a \\ \varphi & ab \end{pmatrix} \begin{pmatrix} \varnothing & ab \\ \varphi & ab \end{pmatrix} \begin{pmatrix} \varnothing & ab \\ \varphi & ab \end{pmatrix} \begin{pmatrix} \varnothing & ab \\ \varphi & ab \end{pmatrix} \begin{pmatrix} \varnothing & ab \\ \varphi & ab \end{pmatrix} \begin{pmatrix} \vartheta & ab \\ \varphi & ab \end{pmatrix} \begin{pmatrix} \vartheta & \varphi \\ \varphi & ab \end{pmatrix} \begin{pmatrix} a & \emptyset \\ \varphi & \varphi \end{pmatrix} \begin{pmatrix} a & \emptyset \\ \varphi & ab \end{pmatrix} \begin{pmatrix} a & \emptyset \\ \varphi & \varphi \end{pmatrix} \begin{pmatrix} a & \emptyset \\ \varphi & ab \end{pmatrix} \begin{pmatrix} a & \emptyset \\ \varphi & ab \end{pmatrix} \begin{pmatrix} a & \emptyset \\ \varphi & ab \end{pmatrix} \begin{pmatrix} a & \emptyset \\ \varphi & ab \end{pmatrix} \begin{pmatrix} a & \emptyset \\ \varphi & ab \end{pmatrix} \begin{pmatrix} a & \emptyset \\ \varphi & ab \end{pmatrix} \begin{pmatrix} a & \emptyset \\ \varphi & ab \end{pmatrix} \begin{pmatrix} a & \emptyset \\ \varphi & ab \end{pmatrix} \begin{pmatrix} a & 0 \\ a & ab \end{pmatrix} \begin{pmatrix} a & 0 \\ a & ab \end{pmatrix} \begin{pmatrix} a & 0 \\ a & ab \end{pmatrix} \begin{pmatrix} a & 0 \\ a & ab \end{pmatrix} \begin{pmatrix} a & 0 \\ a & ab \end{pmatrix} \begin{pmatrix} a & 0 \\ a & ab \end{pmatrix} \begin{pmatrix} a & 0 \\ a & ab \end{pmatrix} \begin{pmatrix} a & 0 \\ a & ab \end{pmatrix} \begin{pmatrix} a & 0 \\ a & ab \end{pmatrix} \begin{pmatrix} a & 0 \\ a & ab \end{pmatrix} \begin{pmatrix} a & 0 \\ a & ab \end{pmatrix} \begin{pmatrix} a & 0 \\ a & ab \end{pmatrix} \begin{pmatrix} a & 0 \\ a & ab \end{pmatrix} \begin{pmatrix} a & 0 \\ a & ab \end{pmatrix} \begin{pmatrix} a & 0 \\ a & ab \end{pmatrix} \begin{pmatrix} a & 0 \\ a & ab \end{pmatrix} \begin{pmatrix} a & 0 \\ a & 0 \end{pmatrix} \begin{pmatrix} a & 0 \\ a & 0 \end{pmatrix} \begin{pmatrix} a & 0 \\ a & 0 \end{pmatrix} \begin{pmatrix} a & 0 \\ a & 0 \end{pmatrix} \begin{pmatrix} a & 0 \\ a & 0 \end{pmatrix} \begin{pmatrix} a & 0 \\ a & 0 \end{pmatrix}$$

EXAMPLE 4.9. Let P be the three-element fence $\{a, b, c\}$ where b > a < c; then $L = \mathcal{O}(P)$ is the lattice $\{\emptyset, a, ab, ac, abc\}$ (Fig. 3).

Clearly $\downarrow \emptyset = \downarrow a = \emptyset$ and $\downarrow ab = \downarrow ac = \downarrow abc = a$ (Table II).

Then $\mathscr{S}_1(L)$ is the lattice $\{\emptyset, a\} \times L \cup \{ab, ac, abc\} \times \{a, ab, ac, abc\}$ (Fig. 4).

EXAMPLE 4.10. Let Q be the four-element fence $\{w, x, y, z\}$, where w < x > y < z; then $M = \mathcal{O}(Q)$ is the lattice $\{\emptyset, w, y, wy, yz, wxy, wyz, wxyz\}$ (Fig. 5).

Clearly $\downarrow \emptyset = \downarrow w = \downarrow y = \downarrow wy = \emptyset$, $\downarrow yz = \downarrow wyz = y$, and $\downarrow wxy = \downarrow wxyz = wy$ (Table III).

FIG. 2. The lattice $\mathscr{G}_1(L)$.

FIG. 3. The poset *P* and the lattice $L = \mathcal{O}(P)$.

TABLE II

The Members of $\mathcal{O}(P)$ sans Their Maximal Elements

U	ĴU
Ø a ab ac abc	Ø Ø a a

FIG. 4. The lattice $\mathscr{G}_1(L)$.

FIG. 5. The poset Q and the lattice $M = \mathcal{O}(Q)$.

TABLE III

The Members of
$\mathcal{O}(Q)$ sans Theirs
Maximal Elements

U	ĴU
Ø	Ø
У	Ø
yz	y X
W WY	Ø
wy wvz	v
wxy	wy
wxyz	wy

Thus $\mathscr{S}_1(M)$ has 52 elements:

 (\emptyset, \emptyset) (\emptyset, y) (\emptyset, yz) $(\emptyset, w) \quad (\emptyset, wy)$ (\emptyset, wyz) $(\emptyset, wxy) \quad (\emptyset, wxyz)$ (y,\emptyset) (y,y) (y,yz) (y,w) (y,wy) (y,wyz) $(y, wxy) \quad (y, wxyz)$ (yz,y)(yz, yz)(yz,wy) (yz,wyz) (yz,wxy) (yz,wxyz) (w, \emptyset) (w,y)(w,yz) (w,w) (w,wy) (w,wyz) (w,wxy)(w, wxyz) (wy,\emptyset) (wy,y) (wy,yz) (wy,w) (wy,wy) (wy,wyz) (wy,wxy) (wy,wxyz)(wyz,y) (wyz,yz)(wyz,wy) (wyz,wyz) (wyz,wxy) (wyz,wxyz)(wxy,wy) (wxy,wyz) (wxy,wxy) (wxy,wxyz)(wxyz,wy) (wxyz,wyz) (wxyz,wxy) (wxyz,wxyz).

5. BOOLEAN FUNCTIONS ON THE LATTICE OF BOOLEAN FUNCTIONS: THE SOLUTION TO GRÄTZER'S FIRST PROBLEM

In this section, we solve Problem 1 of Section 1, posed by Grätzer in 1964 (Corollary 5.6): The lattice $S_k(L)$ (for a bounded distributive lattice L) is determined up to isomorphism by the lattice $S_1(L)$. Indeed, we prove the surprising result that $S_{k+1}(L)$ is canonically isomorphic to $S_1(S_k(L))$, the lattice of unary Boolean functions on the lattice of k-ary Boolean functions of L (Theorem 5.5).

Recall that $P \in \mathbf{P}$ and $L = \mathcal{O}(P)$.

LEMMA 5.1. Let $\vec{U} := (U_{\vec{\varepsilon}})_{\vec{\varepsilon} \in 2^k}$, $\vec{V} := (V_{\vec{\varepsilon}})_{\vec{\varepsilon} \in 2^k} \in \mathscr{S}_k(L)$ be such that $[U_{\vec{\delta}} \cap V_{\vec{\varepsilon}}, U_{\vec{\delta}}]_L$

is a Boolean lattice whenever $\vec{\delta}$, $\vec{\varepsilon} \in \mathbf{2}^k$ and $\vec{\delta} < \vec{\varepsilon}$. Choose $W_{\vec{\varepsilon}} \in [U_{\vec{\varepsilon}} \cap V_{\vec{\varepsilon}}, U_{\vec{\varepsilon}}]_L$ for all $\vec{\varepsilon} \in \mathbf{2}^k$. Then $(W_{\vec{\varepsilon}})_{\vec{\varepsilon} \in \mathbf{2}^k}$ belongs to $\mathscr{S}_k(L)$.

Proof. Let $\vec{\delta}, \vec{\epsilon} \in \mathbf{2}^k$ be such that $\vec{\delta} < \vec{\epsilon}$. Then

$$\mathring{\downarrow} W_{\vec{\delta}} \subseteq \mathring{\downarrow} U_{\vec{\delta}} \subseteq U_{\vec{\epsilon}} \cap V_{\vec{\epsilon}} \subseteq W_{\vec{\epsilon}}$$

(using Note 4.3).

COROLLARY 5.2. Let $\vec{U} := (U_{\vec{\varepsilon}})_{\vec{\varepsilon} \in 2^k}, \ \vec{V} := (V_{\vec{\varepsilon}})_{\vec{\varepsilon} \in 2^k} \in \mathscr{S}_k(L)$ be such that

$$[U_{\vec{\delta}} \cap V_{\vec{\varepsilon}}, U_{\vec{\delta}}]_L$$

is a Boolean lattice whenever $\vec{\delta}, \vec{\varepsilon} \in \mathbf{2}^k$ and $\vec{\delta} \leq \vec{\varepsilon}$. Then

$$\begin{bmatrix} \vec{U} \land \vec{V}, \vec{U} \end{bmatrix}_{\mathscr{S}_{\iota}(L)}$$

is a Boolean lattice.

Proof. Let

$$\vec{W} := (W_{\vec{\varepsilon}})_{\vec{\varepsilon} \in \mathbf{2}^k} \in [\vec{U} \land \vec{V}, \vec{U}]_{\mathscr{S}_k(L)}.$$

Thus, for all $\vec{\varepsilon} \in \mathbf{2}^k$, $W_{\vec{\varepsilon}} \in [U_{\vec{\varepsilon}} \cap V_{\vec{\varepsilon}}, U_{\vec{\varepsilon}}]_L$, so there exists $W'_{\vec{\varepsilon}} \in [U_{\vec{\varepsilon}} \cap V_{\vec{\varepsilon}}, U_{\vec{\varepsilon}}]_L$ such that $W_{\vec{\varepsilon}} \cap W'_{\vec{\varepsilon}} = U_{\vec{\varepsilon}} \cap V_{\vec{\varepsilon}}$ and $W_{\vec{\varepsilon}} \cup W'_{\vec{\varepsilon}} = U_{\vec{\varepsilon}}$. By Lemma 5.1, $\vec{W}' := (W'_{\vec{\varepsilon}})_{\vec{\varepsilon} \in \mathbf{2}^k}$, belongs to $\mathscr{S}_k(L)$; clearly $\vec{W} \wedge \vec{W}' = \vec{U} \wedge \vec{V}$ and $\vec{W} \vee \vec{W}' = \vec{U}$.

LEMMA 5.3. Let $\vec{U}_0 := (U_{\vec{e}0})_{\vec{e} \in \mathbf{2}^k}$, $\vec{U}_1 := (U_{\vec{e}1})_{\vec{e} \in \mathbf{2}^k} \in \mathscr{S}_k(L)$ be such that (\vec{U}_0, \vec{U}_1) belongs to $\mathscr{S}_1(\mathscr{S}_k(L))$. Then $\downarrow U_{\vec{\delta}0} \subseteq U_{\vec{e}1}$ for all $\vec{\delta}, \vec{e} \in \mathbf{2}^k$ such that $\vec{\delta} < \vec{e}$.

Proof. Fix, $\vec{\delta}$, $\vec{\epsilon} \in \mathbf{2}^k$ such that $\vec{\delta} < \vec{\epsilon}$. By Note 4.3,

$$[\vec{U}_0 \land \vec{U}_1, \vec{U}_0]_{\mathscr{S}_k(L)}$$

is a Boolean lattice.

For all $\vec{\eta} \in \mathbf{2}^k$, let

$$W_{\vec{\eta}} := \begin{cases} U_{\vec{\eta}\vec{0}} \cap U_{\vec{\eta}\vec{1}} & \text{if } \vec{\eta} < \vec{\varepsilon} \\ U_{\vec{\eta}\vec{0}} & \text{otherwise.} \end{cases}$$

Then $\vec{W} := (W_{\vec{n}})_{\vec{n} \in 2^k} \in \mathscr{S}_k(L)$; indeed

$$\vec{W} \in [\vec{U}_0 \land \vec{U}_1, \vec{U}_0]_{\mathscr{S}_k(L)}.$$

Let $\vec{W}' := (W'_{\vec{\eta}})_{\vec{\eta} \in \mathbf{2}^k} \in \mathscr{S}_k(L)$ be such that $\vec{W} \wedge \vec{W}' = \vec{U}_0 \wedge \vec{U}_1$ and $\vec{W} \vee$ $\vec{W}' = \vec{U}_0.$

Clearly $W'_{\vec{\delta}} = U_{\vec{\delta}0}$ and $W'_{\vec{\epsilon}} = U_{\vec{\epsilon}0} \cap U_{\vec{\epsilon}1}$. Hence $\bigcup U_{\vec{\delta}0} \subseteq U_{\vec{\epsilon}1}$.

LEMMA 5.4. Let $\vec{U}_0 := (U_{\vec{\epsilon}0})_{\vec{\epsilon} \in 2^k}$, $\vec{U}_1 := (U_{\vec{\epsilon}1})_{\vec{\epsilon} \in 2^k} \in \mathscr{S}_k(L)$ be such that (\vec{U}_0, \vec{U}_1) belongs to $\mathscr{S}_1(\mathscr{S}_k(L))$. Then for all $\vec{\varepsilon} \in \mathbf{2}^k$, $\bigcup U_{\vec{\varepsilon}0} \subseteq U_{\vec{\varepsilon}1}$.

Proof. Fix $\bar{\varepsilon} \in 2^k$. It suffices to prove that $[U_{\bar{\varepsilon}0} \cap U_{\bar{\varepsilon}1}, U_{\bar{\varepsilon}0}]_L$ is a Boolean lattice. Let $W \in [U_{\overline{\epsilon 0}} \cap U_{\overline{\epsilon 1}}, U_{\overline{\epsilon 0}}]_L$. For all $\vec{\eta} \in \mathbf{2}^k$, let

$$(W_{\vec{\eta}}) := \begin{cases} U_{\vec{\eta}\vec{0}} \cap U_{\vec{\eta}\vec{1}} & \text{if } \vec{\eta} < \vec{\varepsilon}, \\ W & \text{if } \vec{\eta} = \vec{\varepsilon} \\ U_{\vec{\eta}\vec{0}} & \text{otherwise.} \end{cases}$$

Then $\vec{W} := (W_{\vec{\eta}})_{\vec{\eta} \in 2^k} \in \mathscr{S}_k(L)$, and it lies in the Boolean interval

 $[\vec{U}_0 \wedge \vec{U}_1, \vec{U}_0]_{\mathscr{S}_l(L)}.$

Let $\vec{W'_1} := (W'_{\vec{\eta}})_{\vec{\eta} \in \mathbf{2}^k} \in \mathscr{S}_k(L)$ be such that $\vec{W} \wedge \vec{W'} = \vec{U}_0 \wedge \vec{U}_1$ and $\vec{W} \vee \vec{U}_1$ $\vec{W}' = \vec{U}_0$. Clearly $W \cap W'_{\vec{e}} = U_{\vec{e}0} \cap U_{\vec{e}1}$ and $W \cup W'_{\vec{e}} = U_{\vec{e}0}$.

The lattices $S_{k+1}(L)$ and $S_1(S_k(L))$ are isomorphic. THEOREM 5.5. Define a map

$$\Phi: \mathscr{G}_{k+1}(L) \to \mathscr{G}_1(\mathscr{G}_k(L))$$

as follows: for all $(U_{\vec{\zeta}})_{\vec{\zeta} \in \mathbf{2}^{k+1}} \in \mathscr{S}_{k+1}(L)$, let

$$\Phi((U_{\vec{\zeta}})_{\vec{\zeta} \in \mathbf{2}^{k+1}}) = ((U_{\vec{\varepsilon}\mathbf{0}})_{\vec{\varepsilon} \in \mathbf{2}^k}, (U_{\vec{\varepsilon}\mathbf{1}})_{\vec{\varepsilon} \in \mathbf{2}^k}).$$

Define a map

$$\Psi: \mathscr{S}_1(\mathscr{S}_k(L)) \to \mathscr{S}_{k+1}(L)$$

as follows: for all $((U_{\vec{\epsilon}0})_{\vec{\epsilon} \in 2^k}, (U_{\vec{\epsilon}1})_{\vec{\epsilon} \in 2^k}) \in \mathscr{S}_1(\mathscr{S}_k(L))$, let

 $\Psi((U_{\overrightarrow{\varepsilon 0}})_{\overrightarrow{\varepsilon} \in \mathbf{2}^k}, (U_{\overrightarrow{\varepsilon 1}})_{\overrightarrow{\varepsilon} \in \mathbf{2}^k}) = (U_{\vec{\zeta}})_{\vec{\zeta} \in \mathbf{2}^{k+1}}.$

Then Φ and Ψ are mutually inverse order-isomorphisms.

Proof. By Corollary 5.2 and Note 4.3, Φ is well defined. By Lemmas 5.3 and 5.4, Ψ is well defined. They are clearly order-preserving and inverses to each other.

As a corollary, we solve Grätzer's first problem ([3]; see Section 1):

COROLLARY 5.6. Let $L, M \in \mathbf{D}$ be such that $S_1(L) \cong S_1(M)$. Then $S_k(L) \cong S_k(M)$.

EXAMPLE 5.7. Let L be the three-element chain. In Example 4.8, we computed $S_1(L)$ and $S_2(L)$. In Example 4.10, we computed $S_1(M)$, where $M \cong S_1(L)$. In both examples, we listed the elements of $\mathscr{S}_2(L)$ and $\mathscr{S}_1(\mathscr{S}_1(L))$. The isomorphism of Theorem 5.5 can be easily seen by turning each 2×2 matrix of Example 4.8 into an ordered pair by grouping the rows together and using the isomorphism $S_1(L) \cong M$ given by

$$(\emptyset, \emptyset) \mapsto \emptyset$$
$$(\emptyset, a) \mapsto y$$
$$(\emptyset, ab) \mapsto yz$$
$$(a, \emptyset) \mapsto w$$
$$(a, a) \mapsto wy$$
$$(a, ab) \mapsto wyz$$
$$(ab, a) \mapsto wxyz.$$

6. THE PRIESTLEY DUAL OF THE LATTICE OF BOOLEAN FUNCTIONS: THE SOLUTION TO GRÄTZER'S SECOND PROBLEM

In this section, we solve Problem 2 of Section 1 posed by Grätzer in 1964 and restated in 1978 in his influential book (Theorems 6.7 and 6.9): We completely characterize the lattices that can arise as $S_k(L)$ or S(L) for a bounded distributive lattice L. We do so in terms their Priestley spaces of prime ideals.

Recall that $P \in \mathbf{P}$ and $L = \mathcal{O}(P)$.

NOTE 6.1. Let $p \in P$. The following are equivalent:

(1) p is normal;

(2) there exist $U, V \in \mathcal{O}(P)$ such that $U \setminus V$ is an antichain containing p;

(3) there exist $W \in \mathcal{O}(P)$ and a clopen subset C of P such that $p \in C \subseteq Max W$.

Proof. Note 4.3 gives the equivalence of (1) and (2) and the fact that (2) implies (3). To show that (3) implies (2), let $U, V \in \mathcal{O}(P)$ be such that $p \in U \setminus V \subseteq C$. Then $U \setminus V$ is an antichain.

LEMMA 6.2. Let $p, q \in P$ and let $\vec{\delta}, \vec{\varepsilon} \in \mathbf{2}^k$. Assume that p < q and $\vec{\delta} \ge \vec{\varepsilon}$. Then $I_{p,\vec{\delta}} \subseteq I_{q,\vec{\varepsilon}}$.

Proof. Let $(U_{\vec{\eta}})_{\vec{\eta} \in 2^k} \in I_{p, \vec{\delta}}$. Then $p \notin U_{\vec{\delta}}$. Assume for a contradiction that $q \in U_{\vec{\epsilon}}$. Then $p \in \bigcup_{\vec{\ell}} U_{\vec{\epsilon}}$ and hence $p \in U_{\vec{\delta}}$, a contradiction.

LEMMA 6.3. Let $p \in P$ and let $\vec{\delta}, \vec{\epsilon} \in 2^k$. Assume that p is special and that $\vec{\delta} \ge \vec{\epsilon}$.

Then $I_{p, \vec{\delta}} \subseteq I_{p, \vec{\varepsilon}}$.

Proof. Let $(U_{\vec{\eta}})_{\vec{\eta} \in 2^k} \in I_{p, \vec{\delta}}$. Then $p \notin U_{\vec{\delta}}$ and $\bigcup_{\vec{e}} U_{\vec{e}} \subseteq U_{\vec{\delta}}$, so, by Note 4.3, $U_{\vec{e}} \setminus U_{\vec{\delta}}$ is an antichain. Hence $p \notin U_{\vec{e}}$, by Note 6.1.

LEMMA 6.4. Let $p, q \in P$ and let $\vec{\delta}, \vec{\varepsilon} \in \mathbf{2}^k$. Assume that $I_{p, \delta} \subseteq I_{q, \vec{\varepsilon}}$. Then $p \leq q$.

Proof. Assume for a contradiction that $p \leq q$. Let $U \in \mathcal{O}(P)$ be such that $p \notin U$ and $q \in U$. Then $(U)_{\vec{\eta} \in 2^k} \in I_{p, \vec{\delta}} \setminus I_{q, \vec{\epsilon}}$, a contradiction.

LEMMA 6.5. Let $p, q \in P$ and let $\vec{\delta}, \vec{\varepsilon} \in \mathbf{2}^k$. Assume that $I_{p, \vec{\delta}} \subseteq I_{q, \vec{\varepsilon}}$. Then $\vec{\delta} \ge \vec{\varepsilon}$.

Proof. Assume for a contradiction that $\vec{\delta} \ge \vec{\epsilon}$. For all $\vec{\eta} \in \mathbf{2}^k$, let

$$U_{\vec{\eta}} := \begin{cases} P & \text{if } \vec{\eta} \ge \vec{\varepsilon}, \\ \emptyset & \text{otherwise.} \end{cases}$$

Then $(U_{\vec{\eta}})_{\vec{\eta} \in \mathbf{2}^k} \in I_{p, \vec{\delta}} \setminus I_{q, \vec{\epsilon}}$, a contradiction.

LEMMA 6.6. Let $p \in P$ and let $\vec{\delta}$, $\vec{\varepsilon} \in 2^k$. Assume that $I_{p, \vec{\delta}} \subseteq I_{p, \vec{\varepsilon}}$ where $\vec{\delta} \neq \vec{\varepsilon}$.

Then p is special.

Proof. By Lemma 6.5, $\vec{\delta} > \vec{\epsilon}$.

Assume, for a contradiction, that *p* is normal. By Notes 4.3 and 6.1, there exist *U*, $V \in \mathcal{O}(P)$ such that $p \in U \setminus V$ and $\downarrow U \subseteq V$. For all $\eta \in \mathbf{2}^k$, let

$$W_{\vec{\eta}} := \begin{cases} V & \text{if } \vec{\eta} \ge \vec{\delta}, \\ U & \text{if } \vec{\eta} \ge \vec{\delta}. \end{cases}$$

Then $(W_{\vec{\eta}})_{\vec{\eta} \in 2^k} \in I_{p, \vec{\delta}} \setminus I_{p, \vec{\epsilon}}$, a contradiction.

THEOREM 6.7. The Priestley space of $S_k(L)$ is order-homeomorphic to the ordered space $P \ltimes \mathbf{2}^k$.

Define the order-homeomorphism $\Phi: P(\mathscr{G}_k(L)) \to P \ltimes \mathbf{2}^k$ as follows: for all $p \in P, \ \vec{\varepsilon} \in \mathbf{2}^k$, let $\Phi(I_{p, \ \vec{\varepsilon}}) = (p, \ \vec{\varepsilon}')$.

Proof. By Lemmas 6.4 and 6.5, Φ is well defined and order-preserving. By Lemmas 6.2 and 6.3, Φ is an order-embedding.

Obviously Φ is onto. Hence Φ is an order-isomorphism.

To prove that Φ is a homeomorphism, let

$$\Psi: P(L^{2^k}) \to P(\mathscr{G}_k(L))$$

be the function sending $\{(U_{\vec{e}})_{\vec{e} \in 2^k} \in L^{2^k} | p \notin U_{\vec{e}}\}$ to $I_{p,\vec{e}}$ for all $p \in P$, $\vec{e} \in 2^k$. We know that Ψ is continuous. It is also a bijection. Since Priestley spaces are compact and Hausdorff, Ψ is a homeomorphism (see, for instance, [1], Lemma 10.7A).

After seeing Theorem 6.7 for finite lattices, M. Maróti made the following observation:

COROLLARY 6.8. If L is finite, then $(\mathcal{J}(S_k(L)), <)$ is isomorphic to

$$(\mathscr{J}(L), <) \times (\mathbf{2}^k, \leqslant).$$

THEOREM 6.9. The Priestley space of S(L) is order-homeomorphic to $P \ltimes \mathbf{2}^{\mathbb{N}}$.

Proof. Clearly $P \ltimes 2^{\mathbb{N}}$ is a Priestley space. For all $k \in \mathbb{N}$, let

$$\pi_k: P \ltimes \mathbf{2}^{\mathbb{N}} \to P \ltimes \mathbf{2}^k$$

be the obvious projection; similarly, define $\pi_{kl}: P \ltimes \mathbf{2}^l \to P \ltimes \mathbf{2}^k$ for all k, $l \in \mathbb{N}$ such that $k \leq l$.

We verify that $(P \ltimes \mathbf{2}^{\mathbb{N}}, (\pi_k : P \ltimes \mathbf{2}^{\mathbb{N}} \to P \ltimes \mathbf{2}^k)_{k \ge 1})$ is the inverse limit of the directed system

$$((P \ltimes \mathbf{2}^k)_{k \ge 1}, (\pi_{kl} \colon P \ltimes \mathbf{2}^l \to P \ltimes \mathbf{2}^k)_{1 \le k \le l})$$

in the category of Priestley spaces.

EXAMPLE 6.10. Let *P* be the two-element chain $\{a, b\}$ of Example 4.8 and let $L = \mathcal{O}(P)$ (Fig. 1). Figure 6 shows $P \times 2$ and $P \ltimes 2$.

Note that $P \ltimes \mathbf{2}$ is order-isomorphic to $\mathscr{J}(S_1(L))$, so that $\mathscr{O}(P \ltimes \mathbf{2}) \cong S_1(L)$ (Figs. 2 and 7).

Figure 8 shows P, 2^2 , $P \times 2^2$, and $P \ltimes 2^2$.

EXAMPLE 6.11 Let P be the three-element fence $\{a, b, c\}$ of Example 4.9 and let $L = \mathcal{O}(P)$ (Fig. 3). Figure 9 shows P, $P \times 2$, and $P \ltimes 2$.

Note that $P \ltimes \mathbf{2}$ is order-isomorphic to $\mathscr{J}(S_1(L))$, so that $\mathscr{O}(P \ltimes \mathbf{2}) \cong S_1(L)$ (Figs. 4 and 10).

Indeed, $\mathscr{J}(S_1(L)) = \{(\emptyset, a), (\emptyset, ab), (\emptyset, ac), (a, \emptyset), (ab, \emptyset), (ac, \emptyset)\}.$

EXAMPLE 6.12. Let Q be the four-element fence $\{w, x, y, z\}$ of Example 4.10 and let $M = \mathcal{O}(Q)$ (Fig. 5). Figures 11 and 12 show $Q, Q \times 2$, and $Q \ltimes 2$.

Let *P* be the two-element chain of Example 6.10. Note that $Q \cong P \ltimes \mathbf{2}$ and that $Q \ltimes \mathbf{2} \cong (P \ltimes \mathbf{2}) \ltimes \mathbf{2}$ is order-isomorphic to $P \ltimes \mathbf{2}^2$ (Fig. 8) under the isomorphism

 $(w, 0) \mapsto (a, \alpha)$ $(x, 0) \mapsto (b, \alpha)$ $(y, 0) \mapsto (a, 0)$ $(z, 0) \mapsto (b, 0)$ $(w, 1) \mapsto (a, 1)$ $(x, 1) \mapsto (b, 1)$ $(y, 1) \mapsto (a, \beta)$ $(z, 1) \mapsto (b, \beta).$

FIG. 6. The posets P, $P \times 2$, and $P \ltimes 2$.

FIG. 7. The lattice $S_1(L)$ and the poset $\mathscr{J}(S_1(L))$.

FIG 8. The posets P, 2^2 , $P \times 2^2$, and $P \ltimes 2^2$.

FIG. 9. The posets P, $P \times 2$, and $P \ltimes 2$.

FIG. 10. The lattice $\mathscr{G}_1(L)$ and the poset $\mathscr{J}(S_1(L))$.

FIG. 12. The poset $Q \ltimes 2$.

7. RECOVERING THE LATTICE FROM THE LATTICE OF BOOLEAN FUNCTIONS

In this section, we address Grätzer's remaining problem (see Section 1): We prove that a *finite* distributive lattice L is determined by its lattice of k-ary Boolean functions (Theorem 7.1), but *not* by the lattice of *all* Boolean functions (Note 7.2).

THEOREM 7.1. Let L, M be finite distributive lattices such that $S_k(L) \cong S_k(M)$.

Then $L \cong M$.

Proof. Let $P := \mathscr{J}(L)$ and let $Q := \mathscr{J}(M)$. By Theorem 6.7 and Corollary 6.8, $P \ltimes \mathbf{2}^k \cong Q \ltimes \mathbf{2}^k$, so that $(P, <) \times (\mathbf{2}^k, \leqslant) \cong (Q, <) \times (\mathbf{2}^k, \leqslant)$. By [7], Theorem 3, $(P, <) \cong (Q, <)$, so that $P \cong Q$ and hence $L \cong M$.

NOTE 7.2. Let L be a nontrivial finite distributive lattice. Let \mathcal{M} be the family of finite lattices

$$\{S_k(L) \mid k \ge 1\}.$$

Then $S(L) \cong S(M)$ for any $M \in \mathcal{M}$, but no two lattices in \mathcal{M} are isomorphic.

Proof. The observation follows from Theorem 7.1 and the fact that, for any $N \in \mathbf{D}$, S(N) is a limit of $\{S_k(N) | k \ge 1\}$ in the category \mathbf{D} .

REFERENCES

- 1. B. A. Davey and H. A. Priestley, "Introduction to Lattices and Order," Cambridge University Press, Cambridge, 1990.
- G. Grätzer, On Boolean functions (notes on lattice theory. II), *Rev. Math. Pures Appl.* 7 (1962), 693–697.
- G. Grätzer, Boolean functions on distributive lattices, Acta Math. Acad. Sci. Hungaricae 15 (1964), 195–201.
- 4. G. Grätzer, "General Lattice Theory," Academic Press, New York, 1978.
- 5. H. J. A. M. Heijmans, "Morphological Image Operators," Academic Press, Boston, 1994.
- 6. K. Kaarli and A. Pixley, Affine complete varieties, Algebra Universal. 24 (1987), 74-90.
- L. Lovász, On the cancellation law among finite relational structures, *Periodica Math. Hungarica* 1 (1971), 145–156.
- H. A. Priestley, Ordered topological spaces and the representation of distributive lattices, Proc. London Math. Soc. 24 (1972), 507–530.