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The automorphism group of a function lattice: 
A problem of J6nsson and McKenzie 

J. D.  FARLEY 

Abstract. It is shown that Aut(L ~ is naturally isomorphic to 

Aut(L) x Aut(Q) 

when L is a directly and exponentially indecomposable lattice, Q a non-empty connected poset, and one 
of the following holds: Q is arbitrary but L is a jm-lattice, Q is finitely factorable and L is complete with 
a join-dense subset of completely join-irreducible elements, or L is arbitrary but Q is finite. A problem 
of J6nsson and McKenzie is thereby solved. Sharp conditions are found guaranteeing the injectivity of 
the natural map vp.Q from Aut(P) x Aut(Q) to Aut(P ~ (P and Q posets), correcting misstatements made 
by previous authors. It is proven that, for a bounded poset P and arbitrary Q, the Dedekind-MacNeille 
completion of P o, DM(P Q), is isomorphic to DM(P)Q. This isomorphism is used to prove that the natural 
map Vp.Q is an isomorphism if VDM(p),Q is, reducing a poset problem to a more tractable lattice problem. 

1. Introduction 

T h e  function space pO_, where  P a n d  Q are  o r d e r e d  sets, is the  pose t  o f  

o r d e r - p r e s e r v i n g  m a p s  f r o m  Q to P o r d e r e d  po in twise .  I f  L is a lat t ice,  L Q is a 

function lattice. A pose t  R is directly indecomposable i f  P x Q ~ R impl ies  prec ise ly  

one  o f  P a n d  Q is t r ivial .  I t  is exponentially indecomposable i f  PQ  ~ R impl ies  Q is 

t r ivial .  T h e  a u t o m o r p h i s m  g r o u p  o f  R is d e n o t e d  Au t (R) .  J 6 n s s o n  a n d  M c K e n z i e  

ask  in [19, P r o b l e m  12.3] i f  

A u t ( L  ~ ~ - A u t ( L )  x A u t ( Q )  
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when L is a directly and exponentially indecomposable lattice, and Q a non-empty 
connected poset, which, possibly, is finite. We are working towards the most general 
conditions for which the answer is yes. 

There is in general a trade-off between conditions on the base and conditions on 
the exponent. In w (Theorem 5.6) we handle the case of arbitrary exponent (subject 
to the other hypotheses), but we assume the base is a j r  n-lattice (a complete lattice 
whose completely join-irreducible elements form a join-dense subset, and dually for 
meet). We vastly generalize Duffus and Wille's result for finite exponents and bases 
of finite length ([14, Theorem 1]), as every such base is a jm-lattice. They use the 
"scaffolding," a representation valid only for lattices of finite length analogous to 
Priestley's for distributive lattices ([24]), so their technique is inherently limited. We 
extend Markowsky's representation for jrn-lattices by bipartite directed graphs ([22, 
Definition 1.3(d)]) to obtain what Duffus and Rival call a "logarithmic property" 

([13, w 
In w we handle the case of arbitrary base, but we assume the exponent is finite 

(Theorem 7.7). We at any rate solve the problem above posed by Jbnsson and 
McKenzie. We generalize their own theorem which only takes care of subdirectly 
irreducible lattices ([19, Theorem 11.5]). 

Our trick is to take the ideal completion of L e repeatedly (see [20, w By [12, 
Theorem 3.1], the operation of completing by ideals commutes with exponentiating 
by Q, so we eventually get the dual of an algebraic lattice, which therefore has a 
join-dense subset of completely join-irreducible elements ([4, Theorem 8.8.16]). In 
other words, we get a hybrid of the function lattices dealt with in w167 and 7. The 
base is a j-lattice, "half"  of a ira-lattice: it is complete and the completely 
join-irreducible elements are join-dense. It turns out that, for such a base, the 
exponent need not be finite, but merely finitely factorable, a product of finitely 
many directly indecomposable posets (Theorem 6.18). [Although independently 
arrived at, our method resembles Novotn~?'s ([23, w167 and 8]) and Bauer's ([ 1, w 
The former analyzed function lattices with totally ordered bases. The latter looked 
at a variant of the above problem but assumed that the ideal lattice of the base was 
directly and exponentially indecomposable ([ 1, Satz 6.5.3]).] 

The fact we can expand the class of exponents if we restrict the class of bases 
illustrates the trade-off mentioned earlier, in more ways than one: J6nsson ([18, 
Theorem 14]) has shown that we may replace the complete lattice by a bounded 
poset (yielding a j-poset), provided we assume the finitely factorable exponent 
satisfies the ascending chain condition. Indeed, J6nsson proves that the "natural" 
map 

ve.Q : Aut(P) x Aut(Q) ~ Aut(P Q) 
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given by 

[Vp,Q(2, p)](f)  = 2 ofo p 1 for all 2 e Aut(P), p ~ Aut(Q), and f 6  p o  

is an isomorphism. He uses a lemma ([ 18, Lemma 13]) which is perfectly valid in the 
context of the paper, but nevertheless requires some minor additional hypotheses. It 
might be tempting to think that Ve, Q is a group-embedding for arbitrary P and Q 
(see [8, p. 44 and w [11, w [18, w and [19, w In w we show it is not so. 
We provide the conditions (which cannot be relaxed) under which vp.Q is necessarily 
an embedding, in fact, an embedding of ordered groups from Aut(P) • Aut(Q) ~ to 
Aut(P Q) (where P~ is the dual of P). See Theorem 4.2. 

Our results for function lattices carry over to bounded function spaces, provided 
the Dedekind-MacNeille completion of P (rather than P) satisfies the indecompos- 
ability requirements. As the completion is obviously a complete lattice, we can pull 
down our results for complete lattices. In w we consider Aut(P Q) when the base is 
bounded (but does not necessarily satisfy any other conditions) and Q is arbitrary. 
We prove that D M ( P ~  -~ DM(P) Q (Theorem 8.6). We deduce that if VoM(e~,Q is 
surjective, so is ve,Q (Theorem 8.9). [In fact, we deduce a slightly sharper result 
(Proposition 8.8).] 

In Table 1 we list the various extra conditions on the base L and exponent Q for 
which it is known that Aut(L Q) _-__ Aut(L) • Aut(Q), along with the papers contain- 
ing the corresponding result. The row headers in slanted type are the conditions on 
the base; the  column headers in bold type are conditions on the exponent. For 

Table 1 

base vs. Exponent Finite Fin. Factorable & ACC 

subdirectly irreducible Theorem 7.7, [19] 
finite length Theorems 5.6, 7.7, [14] Theorem 5.6 
ira-lattice Theorems 5.6, 7.7 Theorem 5.6 
j-lattice Theorems 6.18, 7.7, [18] Theorem 6.18, [18] 
j-poset [ 18] [ 18] 
arbitrary Theorem 7.7 

base vs. Exponent Finitely Factorable Arbitrary 

subdirectly irreducible 
finite length Theorem 5.6 
jm-lattice Theorem 5.6 
j-lattice Theorem 6.18 
j-poset 
arbitrary 

Theorem 5.6 
Theorem 5.6 
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instance, that the isomorphism holds when the base is a j-lattice and the exponent 
a finitely factorable poset with the ascending chain condition (satisfying the other 
conditions) is a corollary of Theorem 6.18 as well as a theorem in [ 18]. Except for 
the row for j-posets, all the bases are lattices. 

2. General definitions and notation 

Our definitions and notation come largely from [9]. In the sequel, results within 
a section will be referred to in that section without a section number. 

Let P and Q be ordered sets. Denote by PQ the poser of order-preserving maps 
from Q to P ordered pointwise. That is, for f ,  g e PQ, f_< g in PQ i f f (q)  _< g(q) for 
all q E Q. If p e P, let/5 denote the constant map whose sole value is p. 

Denote by P + Q the disjoint sum of  posets P and Q. 
Let N denote the class of all posets. Let N~n denote the class of all finite posers. 

A singleton poset is called trivial. Note that we are allowing posets to be empty. 
Let R be a poset and ~ a class of posets. We call R exponentially indecomposable 

with respect to ~ if, for P e ~ and Q e ,~, R ~ PQ implies Q is trivial. If  .~ = ~ ,  we 
simply call R exponentially indecomposable. 

We call a poset R directly indecomposable if, for all posets P and Q, R _-_ P x Q 
implies exactly one of P and Q is trivial. 

A poset is finitely factorable if it is a finite product of directly indecomposable 
posets. (The trivial poset is finitely factorable; the empty poset is not.) 

We call a poset R connected if, for all posets P and Q, R ~ P + Q implies P or 
Q is empty. Equivalently, for all r, s e R, there is a natural number n (which, 
without loss of generality, may be chosen to be odd) and there are elements 
r 0 , . . . , r  n ~ R  such t h a t r = r  0 _ r l > r 2 < . . . < r . = s .  

If  S, T, and U are sets, and f :  S ~ T, g: T ~ U functions, 

gof:  S - - ,U  

is the composition of  f and g. If  R ~_ S, then f[R] .'= {f(r) [ r ~ R} ~ T, Imf ,=f[S],  
and f ~ R is the restriction o f f  to R. The inclusion map is denoted tR : R ~ S. The 
identity on S is denoted ids or id(S). 

If  P and Q are posets, f :  P ---, Q is an order-embedding if for all p, p '  ~ P, p < p '  
if and only if f (p) <f(p').  If  it is also onto, it is an order-isomorphism. The set of 
automorphisms of P is denoted Aut(P). 

The dual of a poset P is denoted pa. 
If  P and Q are posets, the natural map 

vp,Q: Aut(P) • Aut(Q) a ~ Aut(P Q) 
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is defined, for all 2 E Aut(P), p ~ Aut(Q), and f e  PQ, by 

[Vp, Q(2, p ) l ( f )  = 2 ofo p 1 

The least element of a poset P (if it exists) is denoted 0p or 0, the greatest element 
by le or 1. A poset with 0 and 1 is bounded. 

If  P is a poset, Q _~ P, and p e P ,  let ~Qp.'={q ~ Q I q <P}.  Let Sp. '=]ep.  A 
subset D _c p is a down-set if Sd _~ D for all d e D. A down-set in Po is an up-set of 
P. 

Let P be a poset. An element p e P is completely join-irreducible if, for all S _~ P 
such that V S exists, p = V S implies p ~ S. The set of all completely join-irre- 
ducible elements of P is denoted j c (P) .  Dually, we define completely meet-irre- 
ducible elements and ~c (P ) .  It is easy to see that this definition is equivalent to [19, 
Definition 6.1]. 

The notation defined below is adapted from (and, one may prove, consistent 
with) [19, Definition 6.2(iii)]. 

Let P be a poset with 1, S _ P. Let 

vs== { V  T I r S and V T exists}. 

If VS = P, then S is join-dense in P. 
Dually, we define AS for subsets of posets with 0; if AS = P, S is meet-dense in 

P. 
The notation below derives from [19, Definition 6.4]. 
Let P be a bounded poset and Q any poset. For  all p ~ P  and q ~ Q, let 

j (p ,  q) : Q ---, P be the function such that, for all t ~ Q, 

p i f t  >q ,  
[j(p, q)](t) = else. 

Dually, k(p, q )  Q --, P is the function such that, for all t ~ Q, 

p i f t  _<q, 
[k(p, q)](t) = else. 

3. The logarithmic approach 

The idea behind the logarithmic approach is to turn a problem about powers 
into a (hopefully easier) problem about products. A logarithm ([ 13, w [8, w [17, 
w turns powers to products and products to sums. In particular, it should be the 
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case that P is directly indecomposable if and only if "log P "  is connected, and P is 
exponentially indecomposable if and only if "log P "  is directly indecomposable. 

We have quite satisfactory theorems regarding automorphism groups of powers 
of connected posets. Hashimoto's argument for [ 16, Theorem 1] establishes the strict 
refinement property (cf. [5, Definition 4.2]) for products of connected posets. 
(Essentially this observation is made in [19, w 

HASHIMOTO'S REFINEMENT THEOREM. I f  P, Q, R, and S are connected 
posets, and 

( p : P x Q ~ - R x S ,  

then there are posets T, U, V, and W, and maps 

~ : T x U ~ - P ,  f l : V x W ~ Q ,  7 : T x V ~ - R ,  and f i : U x W ~ - S  

such that, for all t ~ T, u ~ U, v ~ V, and w ~ W, 

r u),/~(v, w)) = (~(t, v), ~(u, w)). 

Using this property, Duffus proved that any automorphism of a product of 
relatively prime connected posets is a product of automorphisms of the factors ([ 10, 
Corollary 2(a)]). 

Hence if P is directly indecomposable and Q connected, "log(PQ), '' isomorphic 
to Q x "log P," should be a product of connected structures. If  P is in addition 
exponentially indecomposable, "log P "  should be directly indecomposable and 
relatively prime to Q. Hence, assuming Aut ("log P")  ~ Aut P, we should be able 
to employ an analogue of Duffus's result to show that Aut(P ~) --- Aut P x Aut Q. 

As an example, we want to use Priestley duality to obtain a logarithm for 
distributive lattices with properties almost like the desired ones. Let us remind 
ourselves of the rudiments of this duality. A Priestley space P is a compact totally 
order-disconnected ordered space, that is, if p, q e P andp  :g q, then there is a clopen 
down-set D such thatp  ~D, q ED. See [9, 10.15, 10.25, and 10.26] and [24, Theorems 
1-3]. The category D of bounded distributive lattices with bound-preserving 
homomorphisms is dually equivalent to the category P of Priestley spaces with 
continuous order-preserving maps. The functor D from D to P assigns to 
each bounded distributive lattice its poset of prime filters with an appropriate 
topology. The functor E from P to D assigns to each Priestley space its lattice of 
clopen up-sets. If L 1 ,  L 2 ff D and f :  L 1 -~  L2 is a bound-preserving homomorphism, 
then D( f ) :  D(L2) ~ D(L 1) maps each prime filter F of L 2 to f-1(F).  If P1, P2 ~ P and 
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g: P1-+P2 is a continuous order-preserving map, then E(g): E(P=)-+E(P1) maps 
each clopen up-set U of P2 to g - l ( e ) .  

As dual equivalences preserve and reflect isomorphisms, if L e D a n d f e  Aut(L), 
then D(f )  -1 [which equals D(f-1)] belongs to Aut(D(L)), the group of order- 
homeomorphisms on D(L). If f l ,f2 e Aut(L), then 

D(f~ of  2 ) - '  = (D(f2) o D(f~))-1 ~ -  D(f~)-~ o D(f2)-1, 

so the map from Aut(L) to Aut(D(L)) defined by 

f ~-+ D ( f )  I ( f ~  Aut(L)) 

is a group-isomorphism. 
Let L e D and Q e P. The set of continuous order-preserving maps from Q to L 

(with the discrete topology) is a bounded distributive lattice. If Q is finite, its 
topology is discrete, so this lattice equals L Q. Davey proved its Priestley dual space 
is order-homeomorphic to Q • D(L) ([7, Theorem and Corollary]; see also [6, 
Corollaries 2.3 and 2.12]). 

Now assume L is directly and exponentially indecomposable, and Q is finite, 
non-empty, and connected. By the above, 

Aut(L Q) ~ Aut(D(LQ)) ~- Aut(Q x D(L)). 

The Priestley spaces D(L) and Q are relatively prime in the category of ordered 
spaces. For if F is a common factor, then it is finite, in P, and 

D(L) ~ F • G 

for some G e P. By Davey's result and the finiteness of F, 

L ~- ED(L) ~- E(F x G) ~- (E(G)) F, 

which implies F is trivial, because L is exponentially indecomposable. 
To complete the proof, we need a lemma which may be drawn from [2, 3.2 and 

3.3]. 

Let P, Q, R, S, and X be ordered topological spaces such that the graph of the order 
relation of each space is closed in the square. Assume Q and S are finite, X is compact, 

X ~ P •  
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and there is no continuous order-preserving map from X onto the two-element 
antichain 2 (a totally unordered poset with the discrete topology). 

I f  (p, q) ~ P x Q and 

d p : P x Q ~ R x S ,  

then there exist subspaces T ~_ R and U ~_ S such that 

q ~ [ P x { q } l = r x  U 

and U is a direct factor o f  S. 

We may now prove an analogue of  Duffus's result for Priestley spaces. 

Let P and Q ~ P where Q is finite, connected, and relatively prime to P in the category 
of  ordered spaces. Assume there is no continuous order-preserving map from P onto 
2 (with the discrete topology). Then for every (a e Aut(P x Q) there exist 2 ~ Aut(P) 

and p ~ Aut(Q) such that 4) = 2 x p. 

Proof. Without loss of generality, P, Q va 0. There is no continuous order-pre- 
serving map from P x Q onto 2. For  each q e Q, 

qS[P x {q}] = 2q[P] x {p(q)} 

for some 2q e Aut(P) and p e Aut(Q). 
I f q ,  r e Q a n d q _ < r ,  t h e n f o r a l l p e P  

(2q(p), p(q)) < (2r(p), p(q)) < (2r(p), p(r)) 

SO that 

(p, q) < ~b-l(2r(p) , p(q)) <_ (p, r). 

Hence 

~ b - l ( ~ r ( p )  , p(q)) = (p, q) 

so 2q(p) = 2r(p) for all p e P. As Q is connected, there exists 2 e Aut(P) such that 
/~ = 2q for all q e Q. Hence ~b = 2 x p. [] 
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As expected, L e D  is decomposable if and only if there is a continuous 
order-preserving map from D(L) onto 2. (Cf. [9, Exercise 10.3].) Therefore 

Aut(D(L) • Q) _-__ Aut(D(L)) • Aut(Q). 

Putting it all together, we get 

Aut(L Q) ~ Aut(L) x Aut(Q). 

The case just considered points out the importance of having not just a 
logarithm but also a corresponding exponential. Lemma 6.5(iii) of[19] implies that, 
if L is a complete lattice and Q is any poset, j c ( L  Q) equals 

{j(k, q) I k e Jc(L), q e Q} 

and is isomorphic to Q~ • J~(L), so J c ( - )  seems to act like a logarithm. We now 
show that the operator V acts as the corresponding exponential. 

The first lemma is straightforward. 

LEMMA 3.1. Let L be a complete lattice, Q a poset, and P ~_ Q. Let 

~: LQ-~ L p 

be the restriction map 

f~--~fpp ( f e  La), 

and ~ : L p --* L Q the map defined by 

[ku(f)](q) = V f [  Sp q] 

for all f ~ L  e, q E Q .  
Then ~b and 71 are order-preserving functions such that ~b o 7 ~ = id(L e) and 

V o �9 < i d ( L ~ .  [] 

For the remainder of this section, let L be a complete lattice, Q a poset, 
K _~ J~(L), and P __ Q. Let 

M , = V { j ( k , p )  [k eK,  p e P }  ~_L o 

and N := VK ~ L. For each f ~ M and p e P, let 

cgp(f) ,={j(k ,p)  If(P) > k eK}. 
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A s f E M ,  f =  Vp~p ( V  ~ p ( f ) ) .  Hence, for all q s Q, 

f(q) = V V g(q)" 
p ~ p  g~C~p(f) 

The next two claims are easy. 

L E M M A  3.2. I f  f 6 M, p e P, q ~ Q, but p J~ q, then 

V g(q) = O. [] 
g~Cgp(f) 

L E M M A  3.3. I f  f e M ,  k ~ K ,  p, q c P ,  p<_q, and j(k,p)  Ef@(f), then 

j(k, q) ~ Cgq(f). [] 

L E M M A  3.4. For all f 6 M and q ~ P, 

V V g(q)= V g(q)" 
p ~ P g c ~p ( f )  g ~ Cgq(f) 

Proof By Lemmas 2 and 3, 

p ~ P  gEC~p(f) p E P  gcqYp(f)  p ~ p  g~Cgp(f) 
p sZq 

= V V g(q) 
p E P  g E ~ p ( f )  
p<--q 

= V x(q). 
g E ~fq(f) 

p<_q 

We deduce the following claims. 

L E M M A  3.5. For all f ~ M and p e P, 

f(P)= V g(p)- 
g ~ C~p(f) 

L E M M A  3.6 For all f ~ M and q ~ Q, 

[] 

[] 

f(q) = V f[  $pq]. 
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Proof By Lemma 2, 

f(q) = V V g(q) 
pEP gECgp(f) 
p<--q 

= V V g(p). 
pEP g ~ p ( f )  
p~q  

By Lemma 5, 

f(q) = V f(p).  
pEP 
p<q 

From Lemmas 5 and 6, we get the following. 

[] 

L E M M A  3.7. For all f 6 M and q ~ Q, f(q) ~ N. [] 

P R O P O S I T I O N  3.8. Let L be a complete lattice, Q a poset, K ~_ Jc(L) ,  and 
P ~ Q. Let 

M,=V{j(k ,p)  [k ~ K , p ~ P }  ~_L e 

and N,= VK ~_L. Then M ~ N p via the restriction map f ~--~ f pe(f  c M). 

Proof. Define �9 and 7 ~ as in Lemma 1. Let ~* . -=~  rM and ~*:=~Y/~N P. By 
Lemma 7, 4 "  maps M to N p, and, by Lemma 6, 7 j* o q~* = idM. 

Now we show that, for all h ~ N p, 7J*(h) e M. For each h E N p and p ~ P, let 
~p(h) ~_ K be such that h(p) = V @p(h). Hence for all q ~ Q 

[kU*(h)l(q) = V h[$p q] 

= V (V ~,,(h)) 
p~P 
p<_q 

--V V [j(k,p)l(q) 
pEP k~p(h )  
p~q  

SO 

71"(h) = V V j(k,p), 
p~P kE~p(h) 
p<-q 

and, hence, kg*(h) e M. 
Thus, kg* maps N p to M; 

4*: M ~ N p. 
by Lemma 1, ~ * o  ~ * = i d ( N P ) .  Therefore, 

[] 
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4. The injectivity of the natural map 

As stated in w it has been claimed that vp, o (P, Q posets) is always a 
group-embedding. On the basis of this claim, the following result was asserted ([ 18, 
Lemma 13]). 

For any posets A, C, and D, i f  the natural maps 

Aut(A) x Aut(C) -+ Aut(A c) 

Aut(A c) x Aut(D) ~ Aut[(A c)D] 

are &omorphisms, then so is the natural map 

Aut(A) x Aut(C x D) --* Aut(A c • o). 

We construct a counter-example (cf. [3, w Let A = {x, y} be a two-element 
antichain, and C and D two-element chains. Then Ac={Y,  35}. Hence Aut(A) 
contains just ida and the transposition (xy) ,  A u t ( C ) =  {idc}, and Aut(A c) = 
{id(AC), (~f)}. Clearly 

VA,c(idA, idc) = id(A c) and VA,c((Xy), idc) = (237), 

so VA, c is an isomorphism. Similarly, v A c D is an isomorphism. On the other hand, 
VA,Cx D cannot be, for 

Aut(A) • Aut(C • D) 

has four elements, but Aut(A c • D) only two. 

Lemma 13 of [ 18] is correct when the base is not an antichain and the exponents 
are non-empty, for, in this case, v is an embedding. In fact, it is an embedding of 
ordered groups. [For P a poser, Aut(P), ordered as a subset of PP and made a 
group under composition, is an ordered group (po-group in [4, Chapter 13, w 

LEMMA 4.1. Let P and Q be posets, p~ , p2 e P, ql, q2 ~ Q. Assume pl <P2 and 
ql ~: q2. Then there exists g ~ PQ such that g(q~) =p~ and g(q2) =P2. 

Proof. Simply define g: Q -+ P by 

{~i if q > q2, 
g(q) = else 

for all q ~ Q. [] 
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T H E O R E M  4.2. Let P and Q be posets such that P is not an antichain and Q ~ O. 
Then 

vp, Q: Aut (P)  x Aut(Q) ~ ~ Au t (P  Q) 

is an embedding of ordered groups. 

Proof Note  that  v:=ve,Q is a g roup -homomorph i sm.  

p, (r ~ Aut(Q).  
Assume 2 < # and p > a. Fo r  a n y f E  PQ, 

Let  2, # ~ Aut(P) ,  

[v(2,  p ) l ( f )  = 2 o fo  p--1 __( /~ o f o  (7 1 = [V(~, a ) l ( f ) ,  

so v(2, p) < v(/~, a). Hence v is order-preserving.  
N o w  assume v(2, p) < v(#, a). Then, for p ~ P, 

2 ofio p -1 < # o f i o a  -1. 

As Q r 0, we conclude that  2(p) < #(p)  for  all p e P, so 2 </~. 
Suppose for  a contradict ion tha t  p ~ a. Then  p - I  ~ cr l, so, for  some qo e Q, 

p -l(qo) :~ a -  l(qo). Let  ql ' =  a -  l(qo) and q2 := P -l(q0). As P is not  an antichain,  there 

exist r 1 , r 2 E P such that  rl < r 2. Let  pa .'= #-~(r~) and p2 .'= )~ -1(r2). Then  p~ <Pz-  
By L e m m a  1, there exists g ~ PQ such that  g(q~) = P l  and g(q2) =P2.  As 

()~o go  p -1)(qo ) < (/~o go  a-1)(q0), 

we see that  (2 o g)(q2) < (/~ o g)(ql), so 2(p2) < #(Pl) ,  and hence r 2 < r~, a contradic-  

tion. 
Thus,  v is an embedding of  ordered groups.  [] 

5. The case of arbitrary exponent 

The first definitions are drawn f rom [22, w 
A bounded  poset  P is aj-poset if P = VJc(P). A j-lattice is a j - pose t  which is 

a complete  lattice. I f  bo th  P and Po are j -posers  ( j- lat t ices),  then P is a jm-poset 
(jm-lattice). 

A bipartite directed graph, or bi-di-graph, is a triple (X, Y, A) such that  Xc~ Y = 0 

and A ___ X x K 
I f P  is a j m - p o s e t ,  aposet of irreducibles of P is a quintuple (X, Y, A, h, i) where 

CJ(, Y, A) is a bi-di-graph and 
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h: X ~ J~(P) and i: Y ~ Jg~(P) 

bijections such that  (x, y) e A if and only if h(x) ~ i(y) (x e X, y e Y). 
I f  R .-= (X, Y, A, h, i) and R'  ,= (X', Y', A', h', i') are posets o f  irreducibles o f  a 

jm-pose t  P, (~, fl) is an isomorphism from R to R' if ~: X ~ X '  and fl: Y ~  Y' are 
bijections and, for  all x e X, y e Y, (x, y) E A if and only if (co(x), fl(y)) e A'. 

No te  that  the "poset  of  irreducibles" is not  in general a poset at all, but  merely 
a bi-di-graph. We shall turn it upside-down and flesh it out  so that  it truly becomes 

a poset. 
A generalized bi-di-graph is a quintuple (X, Y,A, <x, < r )  such that bo th  

(X, -<x) and (Y, _< r )  are posets and (Z, Y, A) is a bi-di-graph. 
If  P is a jm-poset ,  a generalized poset of irreducibles of P is a septuple 

(X, Y, A, h, i, - -x ,  -< y) such that  (X, Y, A, _< x, - - r )  is a generalized bi-di-graph, 
(X, Y, A, h, i) is a poset of  irreducibles o f  P, and 

h:(X, < x ) ~ J c ( P )  and i:(Y, < y ) ~ J g o ( P )  

are order-isomorphisms.  
I f R  :=(X, Y, A, h, i, < x ,  -< y) and R'. '= (X', Y', A', h', i', <x , ,  -< Y,) are general- 

ized posets of  irreducibles of  a jm-poset P, (~, fl) is an isomorphism from R to R' if 
(~, fl) is an isomorphism from (X, Y, A, h, i) to (X', Y', A', h', i') as posets of  
irreducibles and ~ and fl are order-isomorphisms.  

L E M M A  5.1. Let P be a jm-poset, R = (X, Y, A, h, i, <-x, < r)  a generalized 
poset of irreducibles of P. The relation 

< R : =  < x U  < r w A  

on X•  Y is a partial order, and we se t /~ :=(X~  Y, < ~). (Here A is the converse of 
A, i.e., {(y, x) E ( X u  Y )2 l ( x , y  ) eA}. )  

Proof. Note  that, for  all u, v e X u Y, (u, v) ~ A only if u e Y and v e X. 
The reflexivity o f  <_~ is obvious. 
Suppose u _< ~ v and v < R w, where u, v, w ~ X w Y. I f  (u, v) ~ A, then u e Y and 

v e X ,  so (v,w) E <x. Thus h(v) ~i(u)  and h(v) <h(w), so h(w) s i.e., 
(u, w) e A _ < R. Similarly, if (v, w) e A, then (u, w) e < R- Hence, < R is transitive. 

I f  u _<~v and v < h u ,  then ( u , v ) ~ < x U < y ,  so u = v .  Therefore  < ~  is 
antisymmetric.  [] 

L E M M A  5.2. Let L be a jm-lattice, R = (X, Y, A, h, i, <x, < r) a generalized 
poset of irreducibles of L. Then R = ~ if and only if L is trivial. The poset R is 



22 J . D .  FARLEY ALGEBRA UNIV. 

disconnected i f  and only if  the graph (X, Y, A u .3) is disconnected. In this case, L is 
decomposable. 

Proof T h e  first statement is obvious, as is the necessity of the second statement. 
Suppose R is connected. To prove (X, Y, A u_3) is connected, it suffices to prove 
that if u, v e/~ and u <xV (u < yv) there exists w e Y (respectively, X) such that 
(u, w), (v, w) ~ A (respectively, `3). 

So assume u, v e R and u -<x v. Then, as h(u) r O, there exists m e J//c(L) such 
that h(u) _~ m; hence also h(v) ~ m .  If w = i l(m), then (u, w), (v, w) E A, as desired. 
We argue dually if u _< y v. 

The last remark is [22, Theorem 15(a)]. [] 

LEMMA 5.3. Let P be a bounded poset and Q any poset. Let p, r ~ P and 
q, s ~ Q. Then: 

(1) provided p ~ O , j ( p ,  q) <_j(r,s) if  and only if  p <r  and q >_s; 
(2) provided r ~ 1, k(p, q) <_ k(r, s) i f  and only i f  p < r and q > s; 
(3) j (p ,  q) ~ k(r, s) i f  and only if  p ~ r and q < s. 

Proof The first two parts are obvious: see the proof  of [19, Lemma 6.5]. For 
the last part, 

j (p ,  q) < k(r, s) r for all t ~ Q, [j(p, q)](t) < [k(r, s)](t) 

r q < s implies p < r. [] 

PROPOSITION 5.4. Let P be a jm-poset and Q a poset. Then: 
(1) PQ is a jm-poset; 
(2) J c ( P  o) = ~j(p,q) IP E J c ( P ) , q ~ Q } ;  
(3) Jgc(P Q) = {k(p, q) IP ~ ~c (P ) ,  q ~ Q}; 
(4) if  R = (X, Y, A, h, i, <x,  < Y) and S = (U, V, B, c, d, <_ ~, < v) are general- 

ized posets of  irreducibles of  P and PQ, respectively, then the map 

given by 

((9o c-1)[j(pl, q)] = (h-~(p~), q) and ((9o d-1)[k(p2, q)] = (i ~(P2), q) 

for all Pl ~ Jc(L),  P2 E ~f c(L), and q c Q, is an order-isomorphism. 

Proof Without loss of generality, Q # 0 .  In this case, ( l )  follows from [19, 
Corollary 6.6] and its dual; (2) and (3) follow from [19, Lemma 6.5(iii)] and its 
dual. 
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By (2) and (3), ~b is onto. Let  f i , t 2 e U u V .  Suppose 
c(fi) : j ( p ,  q) and c(t2) : j ( r ,  s). Then 

t~ <s t2  r J(P, q) <j(r, s) 

r p<_r and q > s  

<:> h-~(p) <h-~(r)  and q > s  

(a(t,) < (a(t2). 

23 

tj, t2 ~ U, where 

Similarly, if tl, t2 ~ V, then t < ~  t 2 if and only if ~b(fi) < ~b(t2). 
I f  tl ~ U and t 2 ~ [,I, then tl ~ s  t2 and ~b(tj ) g q~(t2). Lastly, if tl ~ V and t 2 E U, 

where c(t2) =j(p ,  q) and d(tl) = k(r, s), then 

tl <_s 2 <=> j ( p , q ) ~ k ( r , s )  

r p ~ r  and q <s 

r i-~(r) < ~ h ~(p) and s > q 

4,( t,) <_ 4,(t2). [] 

The following is established by the argument  on pp. 120-121 of  [16]: 

L E M M A  5.5. Let X and Y be connected posets, y ~ Y and ~ ~ Aut (X  • Y). Then 
~ [ X x  {y}] = A  x B for some A c X, Be_ y. [] 

T H E O R E M  5.6. Let L be a jm-lattic e that is directly and exponentially indecom- 
posable. Let Q be a non-empty connected poset. Then the natural map 

VL, O :Aut(L) x Aut(Q) e _~ Aut(L o) 

is an isomorphism of  ordered groups. 

Proof. By Theorem 4.2, it suffices to prove VL.O is surjective. Let  7 e Aut(L o). 
Let  R = ( X ,  Y , A , h , i ,  <x ,  < y )  and S = ( U ,  V , B , c , d , _ < u , < v )  be generalized 
posets of  irreducibles of  L and L ~ respectively. Let  ~b: S ~ R  x Qo be the isomor- 
phism of  Proposi t ion 4. The map (c-~ o ~ o c, d-1 o ~ o d) is an au tomorphism of  S, 
and so induces an au tomorphism ~ of  S; let 

F,=q~ o g o q~-~ e Aut(/~ x Q~). 

By Lemma 2, /~ is non-empty  and connected.  
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Let q e Q. By Lemma 5, Y[/~ x {q}] = Z x W ~ for some Z _ / ~  and W c_ Q. By 
Proposition 3.8, it is clear that L ~- M w for some complete lattice M, so W has a 
single element: call it p(q). Note that p s Aut(Q). 

Using the fact 7 -1 e Aut(L Q) and symmetry, we see that, for all q s Q, 
F[/~ x {q}] :Uq(R) x {p(q)}, where Uq~Aut(R). If  r ~ R ,  p , q ~ Q ,  p <_q, and 

#p(r) ~ Uq(r), then up(r) < Uq(r) and p(p) < p(q). As 

(up(r), p(p)) < (Uq(r), p(p)) <_ (Uq(r), p(q)), 

we conclude that 

(r,p) < F l(Uq(r ), p(p)) < (r, q). 

H e n c e / ' - l ( u q ( r  ), p(p)) = (r, p), a contradiction. 
As Q is connected, there exists U s Aut(/~) such that Uq = U for all q e Q. 

Moreover, u[X] = X and u[Y] = Y, so by [22, Theorem 6(b)] there exists 2 ~ Aut(L) 

such that, for all p E L, 

2(p) = V (ho u o 

Therefore, for all f ~ L Q and q ~ Q, 

= V [j((2 of)(p), p(p))](p(q)) 
peQ 

= (2 of)(q), 

so that 

7 ( f )  = 2 ofo  p- ' .  [] 

6. The case of finitely factorable exponent 

In this section, unless otherwise specified, we use the following notation, justified 
by the results of [18, w Let L and Q be such that L is a j-lattice and Q is a 
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connected and directly indecomposable poset. Let 7 e Aut(L o). Let Jc(L) = Zi ~ �9 A i  

be a direct sum decomposition into connected components. For each i e / ,  7 induces 

7i: Ai x Qa ~_ Bi • QO, 

where Jc(L) = Zg~�9 is another direct sum decomposition into connected compo- 
nents. 

Let 

10(7) := {i e I ITi(ai, q) = (2i(ai), Pi(q)) 

for some 2~: A~ ~-B; and Pc: Q =~ Q and all ai eA~, q e Q}. 

Let 

/1 (7)-'= I - I o  (7) = {i e I[7~ (P~ (G, r), q) = (v~ (G, q), r) 

for some poset C~, p;: C~ • Qo_-__ Ai, 

vi: Ci x QO~- Bi, and all cieCi ,  q, r e Q } .  

Let 

and 

For q e Q, let Tq:={p~(q) li  elo(7)}; for t e Tq, let 

Hq,t'={i elo(7) I Pg(q) = t}, 

Yq, t := V ai, a n d  Zq,t:= V •i(ai). 
i C Hq,, i E Hq,~ 
a i E A  i a i E A  i 

Let 

V a~ and P~"= V 
i e �9  i E l l  (?) 
a i E A i a i E A i 

ai. 
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Define a funct ion t: ~r ---, I by l(a) = i if  and only if a e A~ (where a ~ J~ (L)  
and i E I) .  

L E M M A  6.1. Let a, b c J~(L) ,  p ~ L, q, r ~ Q, and Y ~_ Ui~Zo(,~) As be such that 
7j(a, q) =j(b, r) and a <_p v V Y. Then a <_p v V{Y  ~ Y]P,(y)(q) = r}. 

Proof We know 

j(a, q) <j(p,  q) v V J(Y, q) 
y ~ Y  

j(b, r) < TJ(P, q) v V J(2,(y)(Y), P,(y~(q)) 
y ~ Y  

j(b, r) < TJ(P, q) v V {j(2,(y)(y), p,(y~(q)) [ y ~ Y and p,(y~(q) < r} 

j(b, r) <TJ(P, q) v V {j(it,(y)(y), r) [y ~ Y such that  p,(y~(q) < r} 

j(b, r) < TJ(P, q) v V {J('~,(y~(Y), r) [ y ~ Y such that  p,(y~(q) = r} 

v V {j(2,(y)(y), r) [y ~ Y such that  p,(y)(q) < r} 

j(a, q) <_j(p, q) v V {J(Y, q) [Y ~ Y such that  p,(y)(q) = r} 

1 v V {J(Y, p,~)~(r)) [y ~ Y such that  q < p,(y)(r)}. 

Evaluat ing at q, we see that  

a <_p v V {Y ~ Y[P~(y)(q) = r}. 

L E M M A  6.2. Let am ~ A, , for  some m ~Io(7). Let Y ~_ Us~io(~ Ai. Then 

am <-- ~/ Y v pl 

implies a m <_ ~/ Y. 

Proof. For  all q ~ Q, 

j(am, q) <-- V J(Y' q) V 
y E Y  

V J(Pk(c~, r), q) 
k ~ I i ( v )  
6 k ~ C k 

r E Q  

[] 
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Thus,  for  all q e Q, 

j(2,,(am), Pm(q)) < V j(2z(y)(y), p,(y)(q)) V 
y E Y  

V j(Vk(Ck, q), r) 
k~ll(Y) 
C k ~ C k 
r~Q 

for  all qEQ, 2m(am) < V 2,(y)(y) v V 
yE Y k~ 11(7) 

eke C k 

Let s, t e Q be such that  s ~ t. Then 

j(2m(am), pro(S)) < V j(2,(y)(y), pro(S)) V 
y c Y  

implies 

j(am, s) <_ V J(Y, P,~)(pm(S))) V 
y E Y  

which implies am < V y  ~ r Y. 

Vk(Ck, q). 

V j(v~(c~, t), pro(S)) 
k~l l (7)  
ck ~ Ck 

~/ j(~(c~, pm(s)), t) 
kEI l (7)  
Ck E C k 

L E M M A  6.3. Let am eArn for some m ~ Ii(7)- Let Z ~_ (,Ji~(~)A~. Then 

am ~ PO V V Z 

implies a m < V Z .  

Proof For  some c m ~ Cm and r e Q, a m = #m(Cm, r). F o r  all q e Q, 

am < V {ak e Ak [ k ~ lo(7) a n d p g ( q ) = r } v V Z  

by L e m m a  1. 

Let  s, t ~ q be such that  s ~: t. Then  

j(am, t) < ~/ {j(ak, t) I k ~ Io(7), ak e A~, and pk(s) = r} v ~/ j(z, t) 
z 6 Z  

implies 

j(Vm(Cm, t), r) < ~/ {j(2k(ak), pk(t)) ] k e Io(7), ak ~ Ak, and pk(s) = r} 

v V 7j(z, t) 
z ~ Z  

27 

[] 
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If  k ~Io(7), then s ~ t implies pk(s) ~ pk(t). By evaluating at r, we get 

j (Vm(em,  t), r)  ~ V yj(z, t) 
zEZ  

j(am, t) < V j ( z ,  t) 
z ~ Z  

a m < V  Z .  [] 

C O R O L L A R Y  6.4. We have 

~'SxL)P0 = U Ai and J, tc(c)pl= U Ai. 
iEIo(y) i~I1(7) 

Proo f  The result follows f rom Lemmas 2 and 3 by setting Y = Z = 0. [] 

P R O P O S I T I O N  6.5. The lattice L is isomorphic to ~,Po x ~.Pl. 

Proo f  Let 7/: L ~ ~,Po x ~Pl be defined by 

7~(p) = (p A p o , p  Apl )  for a l l p  ~L.  

The map 7 j is clearly order-preserving. If  p, q e L and p :~ q, then there exist m ~ I 
and a m ~ A  m such that  a m < p  but  am :gq. I f  m ~I~(7 ) (where s is 0 to 1), then 
a m < p  A p~ but a,, s q A p~ SO ~U(p) :g 7~(q). Hence T is an order-embedding.  

Let  (u, v) ~ +Po x +Pl. By Corol lary 4, 

u E V  U A i  and v ~ V  U Ai" 
i E I 0 (,2) i ~ 11 (Y) 

We claim that  7~(u v v) = (u, v). Clearly (u, v) < 7J(u v v). If 7~(u v v) s (u, v), then 

there exist m ~ I and a m ~ A~ such that either a m ~ (u V v) A PO and a m :~ u, or  

am < (u v v)Ap~ and a m 5~ V. In either case, a m <_ u v v. In the first case, by 
Corol lary 4, m ~ Io(y), so a m <_ u (Lemma 2). In the second case, by Corol lary  4, 
m E I1(7), so a m <_ V (Lemma 3). This contradict ion shows that  7J(u, v ) <  (u, v), so 
that  (u, v) = kU(u, v). Thus T is onto,  and so an order- isomorphism. [] 

The following is immediate. 

C O R O L L A R Y  6.6. I f  L is directly indecomposable, then/o(7)  = 0 or I1 (y) -- 0. 
[] 

The next lemma is also easy. 
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LEMMA 6.7. For all q ~ Q and t ~ Tq, Yj(Yq,t ,  q) ~-J(Zq,t, t). [] 

L E M M A  6.8. Let  a e L ,  q ~ Q, and t ~ Tq. I f  a <-- Yq,t, then 7j(a, q) = j (b ,  t) for  
some b ~ L. 

Proof. Without loss of generality a ~ AM for some m E I. By Corollary 4, 

mEI0(7). By Lemma 1, a < V { a i i i c H q , ~ , a i ~ A i ,  and pi(q)=p,~(q)} .  Thus 

Pro(q) = t. [] 

LEMMA 6.9. For q E Q, 7 restricts to an isomorphism from 

{j(a, q) [ a ~ ~Po} 

onto 

V {j(b, t) I t ~ Tq and b ~ +Zq, t }. 

Proof. Each a ~ SPo may be represented as 

~/ aq. t where aq,t <_ yq, t(t ~ Tq) 
tC Tq 

by Corollary 4. By Lemma 8 the restriction of 7 is an order-embedding. 
To show the map is onto, it suffices to consider an element 

b ~ ~jc(L)Zq,t 

for some t ~ Tq. By Corollary 4, b E Bm for some m ~ Io(7), and 

7- l  J( b, t) =j(a ,  q) 

for some a E A m (Lemma 8). [] 

LEMMA 6.10. For q E Q, let 

(bq,t)t~ Tq, (b'q,t)t~ Tq E U ~Zq,t" 
t~Tq 

Then 

V bq, t ~ V b'q,t i f  and only i f  bq, t ~ b'q, t for  all t ~ Tq. 
tEZq tEZq 
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Proof Sufficiency is obvious. For necessity, fix t ~ Tq. Without loss of general- 
ity, bq,t~Jc(L). For each u ~Tq, there is a subset Zq, u ~_Jc(L) such that 
b'q,u = V Zq,u. By Corollary 4, 

Zq, u ~ U Bi 
i e I 0 (?) 

for all u E Tq. By Lemma 9, for all u ~ Tq and z ~ Zq,u, ~ - l j ( z ,  u )  = j ( y ,  q) for some 
y E jc(L).  Lemma 1 for 7 -1 implies that bq, t <_ V Z q ,  t = bq,r [] 

LEMMA 6.11. Let q 6 Q .  For f ~ V { j ( b , t )  l t E T q  and b~,Zq,t},  there is a 

unique family 

T ( f )  '= (bq,t)t~ Tq G ~I +Zq,, 
tETq 

such that 

f = V j(bq,,, t). 
tETq 

The map 

7J: V{j(b, t) I t ~ Tq and b ~ +Zq,t} --~ ~ +Zq, t 
tETq 

is an order-isomorphism. 

Proof The function f equals 

V j(bq, t, t) 
tETq 

for some family 

(bq, t)teTqC H +Zq, r 
tE Tq 

If 

(bq, t)tETq E l-I +Zq,t 
teTq 

is another such family, then by Lemma 10 bq, t = b'q., for all t ~ Tq. Hence ~ is 
well-defined. By Lemma 10, it is an order-embedding. It is clearly onto, hence an 
order-isomorphism. [] 
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The next corollary follows f rom Lemmas 9 and 11. 

C O R O L L A R Y  6.12. For q ~ Q, there is an isomorphism from J, Po onto 

I] Szq,,. [] 
l~Tq 

C O R O L L A R Y  6.13. Suppose L is directly indecomposable and I~(y) = O. Then 
there is a map p ~ Aut(Q) such that p = Pi for all i ~ I. 

Proof. By Corollary 12 and the fact I1(V) = 0, L is isomorphic to 

lq  Zq,, 
t~Tq 

for each q ~ Q. Hence, for each q ~ Q, Tq is a singleton. Let p(q) denote the sole 
member  of  Tq. For  all i ~ I and q E Q, pi (q) ~ Tq = {p(q) }. [] 

P R O P O S I T I O N  6.14. I f  L is directly indeeomposable and I1(~) = 0, then there 
exist 2 e Aut(L) and p ~ Aut(Q) such that 7 = VL, Q(2, P). Indeed, 2 may be defined by 

the formula 2(p) = ?(/~) for all p ~ L. 

Proof. For  each i ~ I and p ~ L, let 

J,(p) ,=  A,p. 

Let p be the map of Corollary 13. For  all f ~ L e 

? ( f )  =7(qyQJ( f (q ) ,q ) )  

= V 7[J(f(q), q)] 
qcQ 

= V V V j (2 , (a i ) ,p (q) )  
q < Q i ~ l aiE Ji[f(q)] 

= VJ(V V 2 i (a i ) ,p (q) ) .  
qEQ \iElaiEJi[f(q)] 
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In  part icular ,  for all p r L 

7@) = V V 
i6 I aiE Ji(p) 

Hence the m a p  2 is well-defined. Clearly it is an i somorphism.  

For all f e L Q and q ~ Q, 

[7(f)](p(q)) = 2(f (q))  ~ [7(f)](q) = 2 [ f ( p - l ( q ) ) ]  

7 ( f ) = 2 o f o p  1 

ALGEBRA UNIV. 

[] 

The following result is essentially a special case of  [18, Theorem 11]. 

P R O P O S I T I O N  6.15. Suppose/o(7) = 0. Then 

E = {p ~ L t 7(fi) is a constant) and r = {p e L I 7-1(P) is a constant). 

The map ~: E ~ F defined by ~(e) = 7(4) for all e ~ E is an isomorphism. The maps 
2: L ~ F o and #: L ~ E ~ defined by 

2 ( p ) = 7 ( f i )  and # ( p ) = 7 - 1 ( / ~ )  f o r a l l p ~ L  

are isomorphisms. 
The map ~: (F Q) o ~ (E Q) ~ defined by 

~(h)(r)(q) = ~-l[h(q)(r)] 

for all h ~(FQ) Q and q, r ~ Q is an isomorphism, and for all f e L  Q 

f(2 o f )  = #o  [7(f)].  

Proof For  i E I, cf ~ Ci, and r ~ Q, 

y ( # i ( c i ,  r))  = y[qyQJ(#i(Ci, r), q) l 

= V j(vi (ci, q), r) E g Q 
q~Q 

so 2 is well-defined. Work ing  backwards  we see that  2 is onto,  so is an isomor-  
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phism. Moreover, 

= 

r E Q  

= V vi(q, q). 
q ~ Q  

Hence, for all e ~ E, 7(~) is constant with image~ in F, so f is well-defined. It is clearly 
an order-isomorphism with inverse (f) -1 = (7 -1). 

I f p  E L and y(p) = p '  for some p '  ~ L, then p '  is a join of elements of the form 

vi(ci, q) ( i ~ L c i ~ C i ,  qEQ).  Hence p '  is a join of functions of the form 

Vr~oj(vi(ci,  q),r) and 7 I(P')=/5 is a join of functions of the form 
J(Vr~Q #i(ci, r), q). Therefore p lies in E. 

The map ~7 is well-defined and an isomorphism with inverse y Let 
i c I ,  ciEC~,q,r,s,  t~Q.  Then 

kt[7(j(/~/(ci, r), q))(t)](s) = p[j(vi (ci, q), r)(t)](s) 

~- ~) - - I [ ] (V  i (Ci ,  q ) ,  r ) ( t ) l ( s )  

= ~-  l(yi (Ci, q))s)o elseif r < t, 

V J(#i(ci, v), q)(s) if r < t, 
= v ~ Q  

0 else 

• V #i(ci, v) i f q < s a n d r < t ,  

= l  0~Q else. 

On the other hand, 

~7(2o j(p~ (G, r), q))(t)(s) = ~ 1[(2 o j(p~ (G, r), q))(s)(t)] 

= ~ l[y[j(#i(ci, r), q)(s)](t)] 

= {~-l[7(pi(ci, r))(t)] i fq <s ,  
else 

~-" u E Q  

else 

V pi(ci, v) i f q _ < s a n d r < t ,  

= 1 0  ~~ else. 
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Thus, for all f e L Q, 

~7(2 o f )  = #o [7(f)]. [] 

The following proposition may now be proven along the lines of [18, Theorem 
12], using Corollary 6, Proposition 14, and Proposition 15 in place of the theorems 
cited in its proof  (which stipulate as one of their hypotheses that the exponent 
satisfy the ascending chain condition). 

PROPOSITION 6.16. Let L be a directly indecomposable j-lattice and Q a 
directly indecomposable connected poset such that L is exponentially indecomposable 
with respect to {Q}. Then for all n > O, vL.Q, is an isomorphism. [] 

Similarly, the next proposition may be proven along the same lines as [18, 
theorem 14], using Proposition 16 in place of [18, Theorem 12] (cited in its proof). 
As the base is not an antichain and the exponent is non-empty, the conclusion of 
[18, Lemma 13], used in the proof, applies (see w (Note that our result for 
j-lattices is slightly sharper than the one for j-posets in [18, Theorem 14]; in that 
theorem, the base is merely assumed to be exponentially indecomposable.) 

PROPOSITION 6.17. Let L be a j-lattice. Let Q be a finitely factorable 
connected poset. Let .~ be the class of direct factors of Q. Assume L is both directly 
indeeomposable and exponentially indecomposable with respect to 9.. Then the natural 

map 

VL,Q : Aut(L) x Aut(Q) ~ ~ Aut(L Q) 

is an isomorphism of ordered groups. [] 

Hence we get the theorem below. 

T H E O R E M  6.18. Let L be a j-lattice which & directly and exponentially 
indecomposable. Let Q be a finitely factorable connected poset. Then the natural 

map 

VL.Q: Aut(L) x Aut(Q) e ~ Aut(L Q) 

is an isomorphism of ordered groups. [] 



Vol. 36, 1996 The automorphism group of a function lattice 35 

7. The case of arbitrary base 

The following definitions appear  in [9], [15, w and [20, w Recall that a 
non-empty subset D of  a poset is directed if every finite subset of  D has an upper 

bound in D. 
We shall call a poset P a pre-CPO if every directed subset D has a supremum, 

denoted l iD.  (The special notation, which is standard, serves as a convenient 

reminder that the set under consideration is directed.) I f  it also has a 0 it is called 
a CPO (short for chain-complete partially ordered set). 

Recall that an element k of  a poset P is compact if, for all directed D _~ P for 

which l i D  exists and k < [JD, there is an element d s D such that k <_ d. The set of  
all compact  elements of  P is denoted K(P). 

An algebraic poset is a pre-CPO such that every element is a join of  a directed 

set of  compact  elements. An algebraic lattice is an algebraic poset that is also a 
complete lattice. 

An ideal of  a poset P is a directed down-set. The family of  all ideals of  P is 

denoted P~. I f  ap : P ~ P~ is the canonical map o-p(p) = +p (p ~ P), then (P~, o-e) is 
called the ideal completion of P. 

The first statement of  the next proposition is contained in [15, w and the final 
two statements are straightforward. 

P R O P O S I T I O N  7.1. The maps P ~-~ P~ (P a poset) and A ~ ~c(A) (A an 
algebraic poset) are functors yielding an equivalence between the categories of  posets 
with order-preserving maps and algebraic posets with morphisms that preserve di- 
rected joins and compact elements. Indeed, K[Pq = Im ae and the map a ~ $~(A) a 
(a ~ A) is an isomorphism from A to [x(A)]~. 

Moreover, i f  7: P ~- Q (P, Q posets) then y~ P~ ~- Q~ is the unique isomorphism 
such that 

~)a o G p  : O'Q o ~.  

Hence, for 7, 5 E Aut(P), 7 ~ = 6~ implies 7 = 6; 

C O R O L L A R Y  7.2. A poset P is directly indecomposable i f  and only i f  P~ is. 

Proof. Without loss of  generality, P ~ 0. First, note that P is trivial if and only 
if P~ is. Second, by [15, Corollary 4( 1)], the class of  algebraic posets is closed under 
finite direct products, so P --- Q • R implies P"  -~ Q ~ x R ' .  Third, if q5: P"  -~ Q • R, 
where Q and R are posets, then Q and R are algebraic posets and 

~b[~(P~)] = ~(Q) • ~:(R). 
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The following result is proven for lattices in [12, Theorem 3.1], but holds more 
generally for v-semilattices. (See the remark in [19, w 

PROPOSITION 7.3. Let L be a v -semilattice and Q a finite poset. Then there 

is a unique isomorphism ~P: (LQ)~--.(LO e such that, for all f e L e, 

( T o  aLe) ( f )  = aL ~ [] 

COROLLARY 7.4. A lattice L is exponentially indecomposable with respect to 

#an if  and only if  L ~ is. 

Proof. Without loss of generality, L is non-trivial. Suppose L -~ PQ where P ~ 
and Q e r As L is non-trivial, Q # 0, so P is a lattice. By Proposition 3, 

L ~ ~- ( P 0  e. 

Conversely if L * ~_ A e where A e # and Q e 2~an, then, again, Q # 0 and A is a 

lattice. Clearly A is a pre-CPO. 
Now we prove that f ~  ~(A o) implies f e  [~c(A)] e. 
Fix qo e Q. Define, for each a ~ A, the function fa : Q ~ A by 

I f (  if q < q0, 
fa(q) = q) v a else. 

Then fa e A Q. 
If D _cA is directed and f (qo)<_l iD,  then { f d ] d e D }  is directed and f_< 

WJ{fd ] d e D}. Hence f<--fd for some d e D, so f(qo) < d. Therefore, f(qo) e ~c(A). 
The above and the fact L ~ is an algebraic poset imply that A is an algebraic 

poset. Further, ~c(A) is a v-semilattice. By Propositions 1 and 3, 

L ~ g(L 0 g tc(A Q) --_ [~:(A)] Q. [] 

PROPOSITION 7.5. Let L be a lattice. Then L ~a~ & an algebraic lattice. 

Proof It is easy to see that, if M is a lattice, the join of  every non-empty subset 
of M ~ exists. If, in addition, M has a 0, then M ~ is a complete lattice. As L ~ is a 

lattice with 0, L ~ is a complete lattice. [] 

COROLLARY 7.6. Let L be a directly and exponentially indecomposable lattice. 

Then: 
(1) L ~ is directly indecomposable, 
(2) L ~~ is exponentially indecomposable with respect to ~nn, and 

(3) L ~a~ is a j-lattice. 
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Proof. By Proposition 5, L ~~ is the dual of an algebraic lattice. It follows from 
[4, Theorem 8.8.16] that L~~176 V~Cc(L~~ The rest of the corollary follows from 
Corollaries 2 and 4. [] 

T H E O R E M  7.7. Let L be a directly and exponentially indecomposable lattice. 
Let Q be a finite non-empty connected poset. Then the natural map 

vL,Q: Aut(L) x Aut(Q) a ~ Aut(L Q) 

is an isomorphism of  ordered groups. 

Proof. By Theorem 4.2, it suffices to prove that VL,Q is onto. For lattices I" and 
Y, let O x : X ~ X  ~ be the dual-isomorphism ~ x ( X ) = x  ( x e X ) .  If f l : X ~  Y, let 
fl~: X ~ ~ Yo be the unique isomorphism such that 

fl~ ~ ~x = 0 y  o fi- 

Le t  X',  rx, zzx, and fl' denote X ~, Ox~ ~ ax, Zx~ ~ Zx, and fl~a respectively. Thus 
fit: X ~  y~ is the unique isomorphism such that 

f l ~ o ~ = ~ o f l ,  

and fl'~: X~'--* Y~ is the unique isomorphism such that 

f i z z  o ~72 X = "UC y O f t .  

By Proposition 3, there is a unique isomorphism 

~ J l  : (L Q)* -~ (L~) Q, 

such that, for a l l fE  L Q, (7J1 o ZLQ)(f) = ZL ofo ~ .  Hence there is an isomorphism 

e~: (LQ)~ -~ (LO ~ 

such that, for all f ~  L Q, 

7J[ (ZZLQ(f)) = (Z(L~Q~ ~ ~P1 ~ zLe ) ( f )  

= Z(LOe~(Z L ofo ~1). 
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Similarly, there is a unique i somorphism 

such that,  for all g 6 (Lr Qo, 

(1[/2 o 75(L~)QO)(g ) = ZL ~ o g o ~Q. 

Let ~ : =  7~2 o 7J~: ( L ~  ~ Then,  for  a l l f e  L ~, 

(~eo ~ L Q ) ( f )  = ~rL of. 

Let ? ~ Aut (L  Q). The m a p  ~ o 7 ~ o 7' - ~ E Aut((L ~) Q). 

By Corol la ry  6 and Proposi t ion 6.17, there exist # E Aut (L  ~) and p ~ A u t ( Q )  
such that  

Clearly there exists 2 e Aut(L)  such that  # = UL 
We claim that  

~eo (v~,Q(2, p))~ o ~ - '  = v ~  e (2  ~, p). 

For  all f ~ L Q, 

[7 j - l  o vLr162 ,~, p) o 7 q ( z z c e ( f ) )  = [ ~ - 1 o  VLr162162 p)](ZZL o f )  

= W 1(2~ o ZZL ofo p-1)  

= 7/ l(,r,rL o 2 o fo  p 1) 

= 7 J - l ( z z L o  [VLQ(2, P)] ( f ) )  

= 7 t 1((7to VVLQ)([Vr.Q(2, p) ] ( f ) ) )  

= zzL Q([VL,Q(,~o, p ) ] ( f ) ) .  

Therefore  

I[J-1 o yLzz,Q(2 ~,  p )  e rig o 72~LQ = TJTJL Q o yL, Q(,~, p )  

ALGEBRA UNIV. 
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SO 

I / / - - I  o l , L r , , Q ( ~ r z  p )  o I/J = (VL, Q(I~ ' p)),z, 

Hence ~ =  vr,Q(2, p)~', so 7 = VL,Q(2, p) by Proposition 1. 

39 

[] 

8. The D e d e k i n d - M a c N e i H e  completion of  a function space 

Let P be a poset, Q _ P. The set of upper bounds of Q ~ P is denoted QU; the 
set of lower bounds of Q in P is denoted Q( The set 

D M ( P )  .'= {Q _ P I Q = Q~I} 

partially ordered by inclusion is the Dedekind-MacNeille completion of  P. The map 

~ : P ~ D M ( P )  

defined by ~pp(p)= ~p (p ~ P) is the canonical embedding of  P into DM(P). We 
often denote Im q)p by P. (Cf. [9, 2.31], [21, Definition 11.1].) 

LEMMA 8.1. Let P be a bounded poset, Q any poset, L a complete lattice, 
~o ~ L  P such that Im(p is join- and meet-dense in L, <p(0+,) =0L,  and <p(lp) = 1L. 
Then 

{qo oj(p,  q) [p E P, q ~ Q} 

is join-dense in L ~ and 

{~o o k(p,  q) Ip + P, q E Q} 

is meet-dense in L Q. 

Proof  It suffices, by duality, to prove the first assertion. As Im (p is join-dense 
in L, 

f (q)  = V L  (~,Im +f(q)) 

for all f e L Q, q + Q. 
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For all f ~ L Q, let 

Y ( f )  '= {~P ~ q) IP ~ P, q ~ Q, ~o(p) _<f(q)}. 

First we show that f ~  ~ ( f ) u .  
Assume p E P, q, r ~ Q, and cp(p) <f(q). It suffices to prove that 

[~o oj(p, q)](r) <_ f(r). 

If q _< r, then 

[~p oj(p, q)](r) = ~o(p) < f(q) <_f(r). 

If q ~ r, then 

[q9 oj(p, q)](r) = ~0(0p) = 0z <f(r). 

Next we show that f = V ~- ( f ) .  Let g e ~ ( f ) ~ .  For all p e P, q e Q such that 

~o(p) < f(q), 

[~o oj(p, q)](q) < g(q), 

so cp(p) < g(q). Hence for all q e Q, 

g(q) ~ {~o(p) [p ~ P, ~o(p) < f(q) }u = (~,im cp f(q)) u 

so g(q) >_f(q). Therefore g > f  
We have shown that every f ~  L Q equals V ~ ( f ) ,  so 

{~o oj(p, q) [p c P, q ~ Q} 

is join-dense in L ~ [] 

COROLLARY 8.2. Let P be a bounded poset and Q any poset. Then 

{~Pe ~ q), ~~176 k(p, q) [p ~ P, q ~ Q} 

is join- and meet-dense in DM(P)Q. 
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Proof By [9, Theorem 2.36(i)], /~ is join- and meet-dense in DM(P). By [9, 
Theorem 2.33(ii)], (pe(0p) = 0DM(P) and q0p(1p) = IDM(P ). [] 

Let W and X be posets, A ~_ W, B _~ X. Let 

Iso(W, Jr):= {f: w--, x ] f  is an isomorphism}, 

IsoAm(W, Jr):= {fe  Iso(W, X) If[A] = B}, 

and 

AutA ( W),= ISOA,A ( W, W). 

The next lemma is easy. 

LEMMA 8.3. Let W, X, Y, and Z be posets and a: W--* Y, fl: X ~ Z isomor- 

phisms. Let A ~_ W, B ~_X. Define ~: XW ~ Z r  by 

~b(f) = fl o f o O~ - 1  

for all f ~ Jrw. Then �9 is an order-isomorphism and 

~[ISOA,B( W, X)] = Iso~EAI,~E~I(Y, Z). 

In particular, the map ~': AutA(W) ~Aut,EAI(Y) defined by 

~b'(f) = ~ o f o  ~-1 ( f ~ A u t A ( W ) )  

is an order-isomorphism. [] 

PROPOSITION 8.4. Let U and V be posets. There is an order-isomorphism 

~: Iso(U, V) ~ Isob,~(DM(U), DM(V)) 

with the following property: for each f e Iso(U, V), g2(f): DM(U)-~DM(V) is the 
unique order-isomorphism such that 

~ ( f )  ~ ~Pu = CPv o f  

Proof Note that if f:  U-~ V and T _c U, then f [T  ut] =f[T]"(  F o r f e  Iso(U, V), 
define f2(f): D M ( U ) ~ D M ( V )  by 
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(f2(f))(T) =f[Tl 

for all T e DM(U). The above shows f2(f)  is well-defined for a l l f ~  Iso(U, V) and 
clearly 

Q ( f )  o ~0 v = (Pv o f  

and 

f2(f )  ~ Isob. ~(DM(U), DM(V)). 

Let f ,  g ~ Iso(U, V). As each element of DM(V) is a down-set, f_< g implies 
f [T]  ~_g[T] for all T eDM(U) ,  so f2(f)  _< f2(g). Conversely, ~2(f) _< f2(g) implies 
that 

Sf(u) = (O(f))($u) < (f2(g))($u) = Sg(u) 

for all u e U. Hence f N g. Thus, Q is an order-embedding. 
Let h ~ Isor),~(DM(U), DM(V)). L_et f :  U ~  V be the map such that h o (Pu = 

qo V of, obviously an isomorphism. As U is join-dense in DM(U), f2(f )  = h, so t] is 
an order-isomorphism. [] 

COROLLARY 8.5. Let L be a complete lattice, U, Vposets such that V is join- 

and meet-dense in L, and f :  U~-V .  Then there is an order-isomorphism 
F: DM(U) ~ L such that 

zvo f = F o ~ov. 

Proof. By [9, Theorem 2.36(iii)], there exists an isomorphism Z: L - ~ D M ( V )  
such that 

Z ~v=~ov �9 

By Proposition 4, there exists an isomorphism f2(f ) '  DM(U) ~ DM(V) such that 

Q ( f )  ~ (or = 07  of. 

Hence f2(f )  o ~0v = Z of. Let F : = Z  - t  o f2(f).  [] 

T H E O R E M  8.6. Let P be a bounded poset and Q any poset. There is a unique 
isomorphism F: DM(P ~ ~ D M ( P )  ~ such that, for  all f e po,  

(F o q)ee)( f )  = q)P of. 
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Proof. The map F1: PQ~DM(P)  Q defined by F1 ( f )  = ~0p o f  for a l l f e  PQ is an 
order-embedding. By Corollary 2, Im Fl =/SQ is join- and meet-dense in DM(P)Q. 
By Corollary 5, there is an order-isomorphism 

F: D M ( P  Q) ~ D M ( P )  a 

such that F 1 = F o qoeQ. [] 

P R O P O S I T I O N  8.7. Let P be a bounded poset, Q any poset, and 7 E Aut(PO). 
Then there exists a unique ~ ~ AuU;e (DM(P) ~ such that, for all f e po, 

~(~Op o f )  = q~p o 7( f ) .  

We call ~ the automorflhism of DM(P) Q induced by 7. 

Proof. By Proposition 4, there exists O(7) e Autpo(DM(P~ such that 

f2(7) o ~oeQ = ~oeQ o 7- 

By Theorem 6, there is an isomorphism F : DM(P  ~ ~ D M ( P )  ~ such that 

(Fo ~ope)(f) = q~p o f  

for a l l f r  po. Thus F[P ~ = rio. By Lemma 3, there exists 

z A u t p o ( D n ( P )  o) 

such that 39 o F = F o ~(7). Hence, for all f e  po ,  

~(~0, o f )  = ~((Fo cppo)(f)) 

= ( i  ~ F o P . e ) ( f )  

= (Fo  f2(7) o q~pe)(f) 

= (Fo q~ee ~ 7 ) ( f )  

= (Fo (PPe)(7(f)) 

= ~opo ? ( f ) .  

As /SO is join- and meet-dense in DM(P) ~ (Corollary 2), the uniqueness of  
follows. [] 

P R O P O S I T I O N  8.8. Let P be a bounded poset, Q any poset, and 7 ~ Aut(po)-  

Let ~ be the automorphism of DM(P) ~ induced by 7. I f  ~ ~ Im VOM(p),Q, then 
7 ~ Im vp, o. 
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Proo f  Without  loss of  generality, Q # 0. By assumption,  there exist # E 
A u t ( D M ( P ) )  and p e Aut(Q) such that  

= voM(p~,e(#, P). 

Indeed, f rom Proposi t ion  7, # e Au tp (DM(P) ) .  By Proposi t ion 4, there exists 

2 ~ Aut(P)  such that  # o (pp = q)p o 2. We claim that  7 = re, e(2, P). 
For  all f ~  p e ,  

~o~ o (vp, e(2 , p ) ) ( f )  = q)po 2 o f  o p 1 

= # o q~e o f o  p - 1  

= (VDM(P),Q(#, P))(q~p o f )  

= 7(cpp o f )  

= qopo 7 ( f ) -  

As ~op is an embedding,  we have (vp, e(2, p ) ) ( f ) =  7 ( f )  for all f E P  e, so that  

vp, e(2, P) = y. [] 

We conclude the following. 

T H E O R E M  8.9. Let  P be a bounded poset and Q any poset. I f  VD~(P),e is 

surjective, so is Vp, o. [] 

The final result follows easily f rom Theorem 9 and Theorems  5.6, 6.18, and 7.7. 

C O R O L L A R Y  8.10. Let  P be a bounded poset such that D M ( P )  is directly and 

exponentially indecomposable. Let  Q be a connected non-empty poser. Then 

v e , e : A u t ( P )  x Aut(Q)~ ~ Au t (P  e) 

is an isomorphism o f  ordered groups i f  any one o f  the following holds: 

(1) P is a jm-poset;  

(2) P is a j -poset  and Q is f initely factorable; 

(3) Q is finite. [] 
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