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4 J. D. FARLEY

1. Introduction

A Priestley power of a (semi-) lattice L is a (semi-) lattice LT of continuous
order-preserving maps from a Priestley space P to L, where L has the discrete
topology (cf. [17], p. 105). (The maps are ordered pointwise.) Every Priestley
space arises as the poset of prime filters P(M) of a bounded distributive lattice
M, appropriately topologized. Hence Boolean powers ([2], Definition IV.5.3) are a
special case. If L and M belong to the category D of bounded distributive lattices,
then LEM) is the coproduct of L and M in D ([5], Corollary 2.3; [6], Theorem and
Corollary; [24], Theorem).

In [26], the following problem is stated.

Problem. [26]. If L is a lattice and M a bounded distributive lattice, is the cong-
ruence lattice Con(LYM)) 2 (Con L)P(ConM) 2

The problem has been solved in the affirmative for arbitrary L and finite M
([9], Theorem 2.1) as well as for finite L and arbitrary M ([26], Theorem). We
solve the problem completely by showing that

Con(LFM)) = (Con L)} M)

the lattice of continuous order-preserving maps from P(Con M) to Con L with the
Lawson topology A (Corollary 6.11). We present an example to show that, in
general,

Con(LYM)) 2 (Con L)FP(Con M)

(Proposition 7.4). Gréatzer and Schmidt have proven that the isomorphism holds if
and only if either Con L is finite or M is finite ([15], Theorem 3). Our results were
proven independently.

Our approach is to use the results for finite exponents to get the corresponding
results for Priestley powers. By [28], Theorem, every Priestley space P is the inverse
limit of a filtered system of finite posets @ with the discrete topology. Hence every
Priestley power LY is the filtered limit of lattices LY. Using an idea of [23], pp.
98-100, we can capture the congruence lattice of such a limit if we know Con(L®)
for every L? in the system. By [9], Theorem 2.1, we do. (This approach was also
taken in [15], §4, but certain non-trivial steps were passed over without proof.)

We represent various types of posets of continuous order-preserving maps as
posets of semilattice homomorphisms (Theorem 3.6, Corollaries 3.7 and 3.8). For
example, if S is a semilattice with least element 0 and T € D, then

Slat (s, T) = (57%)"7),
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Priestley powers of lattices and their congruences 5

where S is the ideal lattice of S and S?9 this lattice ordered by reverse inclusion.
These representations enable us to provide several alternative representations
of Con(L¥). For example,

Comp(LF) = (Comp L)F

where L is a lattice, P a Priestley space, P the same space with the trivial order,
and Comp L the semilattice of compact congruences of L (Theorem 5.10). Also

Con(L") 2 (Con L)g,

the lattice of continuous maps from P to Con L where the latter has the Scott
topology ¥ (Theorem 6.7). Alternatively, if M € D, then

Con(LP1) 2= Slat (Comp L, V. Ocon 1): (Mpoor”s N Mool ).

the lattice of semilattice homomorphisms from the {0}-V-semilattice Comp L to
the {1}-N-semilattice Mpoo1”, where Mpoo is the minimal Boolean extension of M
(Corollary 6.8). Also

Con(LP(M)) =~ Slat((Comp L,V,0conr), (Con M, N, lconM))

(Corollary 6.10). These representations enable us to relate special cases of our
results to those of [3] and [14] on semilattice homomorphisms between distributive
lattices. In particular, we prove that Slat(L, L) is self-dual for a finite distributive
lattice L (Corollary 3.9). Finally, our representations let us construct the example
which yields a negative solution to the problem.

2. Notation, definitions, and basic theory

Let us introduce notation and remind ourselves of some definitions and basic
results. (See [7], [16], inter alia.) If a poset P has a least element, we denote it 0p
or 0; if it has a greatest element, we denote it 1p or 1. A poset with 0 and 1 is
bounded.

Denote the ordinal sum of posets P and @ by P ® Q. Let P(X) denote the
power set of the set X. Let 1 denote the one-one element poset.

Let P be a poset and () and S subsets. Then Tg .S denotes

{pe@Q|s<pforsomeses}
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6 J. D. FARLEY

and | S denotes
{peQ|s>pforsomeseS}

We also write 1.5 for 1pS and | S for |pS. For s € P, we use 1s and | s for 1 {s}
and | {s}, respectively. If S =19, it is an up-set; if S =] 5, it is a down-set. A
non-empty subset D of P is directed if every finite subset of D has an upper bound
in D. If D has a join it is denoted | | D. (The special notation, which is standard,
serves as a convenient reminder that the set under consideration is directed.) An
ideal is a directed down-set; the set of all such, ordered by inclusion, is denoted
P?. A filtered subset of P is a directed subset of the poset P? whose order is dual
to that of P. A filter is an ideal of P?. The poset of filters of P is denoted P™.

An element k of a poset P is compact if, for all directed subsets D of P such
that | | D exists and p < | | D, there exists d € D such that £ < d. The poset of
compact elements is denoted x(P). If P is a complete lattice, an element k € P is
compact if and only if, for all S C P such that k < \/ .S, there exists a finite subset
T C S such that £ < \/T ([7], Lemma 3.22). An algebraic lattice is a complete
lattice such that every element is a join of compact elements.

The class of semilattices with neutral element is denoted Slat. [The neutral
element is 0 for V-semilattices and 1 for A-semilattices ([4], p. 50).] If S and
T € Slat, then Slat(S, T) denotes the poset of Slat-morphisms from S to T  ordered
pointwise, i.e., for f, g € Slat(S,T), f < g if f(s) < g(s) for all s € S. The subset
of Slat-morphisms f whose images Im f are finite is denoted Slatﬁ“(S, T). Let Lat
be the class of lattices. We regard Slat and Lat as categories with the appropriate
morphisms.

A V-semilattice S with 0 is distributive if, whenever a, z, y € S and

a<zxzVy,

there exist b, ¢ € S such that b < z, ¢ < y, and a = bV ¢. Equivalently, S? is a
distributive lattice. We shall use Stone duality for the class DSlat of distributive
V-semilattices with 0 ([13], IL.5).

A proper ideal I of S € DSlat is prime if, whenever a, b € S and ¢ < a, b
impliesce I forallce S,thenaclorbe . Forallaes, let

a:={1€5%|Iprime,a¢l}.

Let S(S) be the set of prime ideals of S with the topology generated by the basis
{a|ae S} Then S(S) is the Stone space of S.

Given a topological space X, let O(X) denote the bounded distributive lattice
of open sets and CO(X) the U-semilattice with least element () of compact open
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Priestley powers of lattices and their congruences 7

sets. A topological space is sober if every non-empty U-prime (i.e., U-irreducible)
closed set is the closure of a point. Stone spaces may be abstractly characterized
as sober T spaces X such that CO(X) is a basis. See [29], Lemma 1, Lemma 3,

and Satz 4. Indeed, if S € DSlat, then CO(S(S)) —{alacS}. Themapa— a

(a € S) is an isomorphism from S onto CO(S(S)) ([29], pp. 360-361).

Given L € Lat, let Con L denote the lattice of congruences of L. It is well-
known that Con L is a distributive algebraic lattice ([1], Theorem I11.9.15). For
X CLxL,let

9*(X) :=({0 € ConL| X CH}.

Let Comp L := (Con L). It is well-known that
Comp L = { \/19L(ai,bi) ‘ n>0,a;,b; €L (i=1,..n) }
i=1

If M € Lat and f: L — M is a homomorphism, let
Comp( f): Comp(L) — Comp(M)

denote the function ([23], p. 98)
[Comp()(6) := 9™ ((f x F)IF]) (6 € CompL).

If A is an algebraic lattice, then (K(A)7\/,0A) € Slat and (Fc(A))U =2 A
via the map I +— [ |1 (I € x(A)?) with inverse a +— |4y a (a € A). Further, if
(S,V,0g) € Slat, then S is an algebraic lattice and x(S?) ={|s|s € S}, which
is isomorphic to S. (See [10], Corollary 2.) Similarly, if S is a bounded lattice then
kK(S™)={Ts|se S}

If A is an algebraic lattice, the Scott topology is the topology

Y:={UCA|U=1U and for all directed D C A,

| |[peU=DnU#0}.
The Lawson topology is the topology A on A generated by the subbasis
YU{A\Talac A}.

(See [12], pp. 99, 144.)
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8 J. D. FARLEY

If P and @ are ordered spaces and @ has topology 7, QF is the poset of
continuous order-preserving maps from P to @ ordered pointwise; QF is QF where
T is the discrete topology.

An ordered space P is totally order-disconnected if, for all p, ¢ € P such that
p £ g, there exists a clopen up-set U C P such that p € U, ¢ ¢ U. A Priestley space
is a compact totally order-disconnected ordered space. Let P denote the category
of Priestley spaces with continuous order-preserving maps. Let P denote the full
subcategory of finite Priestley spaces. By the proofs of [12], Theorems I11.1.9 and
II1.1.10, an algebraic lattice with the Lawson topology is a Priestley space.

If P is an ordered space, let D(P) denote the set of clopen up-sets of P; let
U(P) denote the set of open up-sets.

Let D denote the category of bounded distributive lattices with {0,1}-
homomorphisms (homomorphisms preserving 0 and 1). For L € D, let P(L)
denote the Priestley space of prime filters of L, appropriately topologized. Let
J (L) denote the poset of join-irreducible elements of L. For a € L, let

pr(a) ={Fe€P(L)|a€F}.

It is well-known that D and P are dually equivalent categories, D(—) and P(—)
being the functors yielding the dual equivalence. We shall identify a lattice with
the clopen up-sets of its Priestley dual space and shall not differentiate between
the abstract and concrete forms of the lattice. For the details of Priestley duality,
see [20], [21].

If L € D, there is an isomorphism from L¢ to Z/{(P(L)). Refer to [22], §8;

see also [7], 10.24.

If P € P, let P denote the trivially ordered Priestley space with the same
topology as P. We denote the minimal Boolean extension of L € D by Lpge. See
[1], Definition V.4.5, [21], §6.

If L € D, then Con L is dually isomorphic to the lattice of closed subsets of
P(L) ([7], 10.27).

Let P be a set, II, Iy partitions of P. Let v: P — II be the map assigning
each element of P its equivalence class. The set of partitions of P is ordered as
follows: II < Il if every equivalence class of II is contained in some equivalence
class of IIy. If IT < I, let

V11 - II — HO

be the map assigning each equivalence class of II the unique equivalence class of
IIy containing it.

Given a partition II := {V;};c; of a poset P into equivalence classes indexed
by a set I, we define a quasiorder <y on II as follows. Let <y be the transitive
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Priestley powers of lattices and their congruences 9

closure of the relation = defined in this way: V; =< Vj if p < ¢ for some p € V;,
qgeV; (i, j€l).

If P € P, denote by Ep the ordered set of partitions II of P into open equi-
valence classes such that (II, <y) is partially ordered. Regard II as a space with
the discrete topology. The same partition IT with the antichain ordering is denoted
T Let &p = {11 |11 € &p ).

Let P € P, M € Lat U Slat. For every Il € &p, let uﬁ/[:MH — MP be
defined by uM (f) := fovn (f € M1).

For II, II; € Ep such that IT < I, let

M .z, I
il Mo — M

be defined by
M%Hc,(f) = fovmm, (f € Moy,

For L € Lat, P € P and p € P, denote by x, the kernel of the p-th
projection of L¥ onto L. Define

[p: Con(LP) — (Con L)F
as follows: for § € Con(L¥) and p € P, let

5 (0)](p) :={(a,b) e Lx L|(f,g) €0V xpforall f, ge L”
such that f(p) =a, g(p) =b}.

Define B
I'p: Comp(L") — (Comp L)”

by T'p(0) := T’ () for all § € Comp(LF). Define
Ay (Con L) — Con(LF)

as follows: for F € (Con L)P, let

AW(F) == {(f,9) € L¥ x LT | (f(p),g(p)) € F(p) forallpe P).

Define .
Ap: (Comp L)P — Comp(LF)

by Ap(F) := Al(F) for all F € (Comp L), (That the above functions are well
defined will be shown in Proposition 5.7.)
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10 J. D. FARLEY

If L € Lat and P € P, q, b€ L, and py € P, define mp(a,b,po): P — L for
all p € P as follows:

a lfp = Po,
[mp(a,b,po)l(p) := {a Vb ifp>po,
alb else.

Finally, we remind ourselves of basic categorical notions. Let C be a category
and F a filtered poset. Let (C;);cr be a family of objects of C and

(fij: C; — Ci)"';jSEjF

a family of morphisms with the following properties:
(1) fi =1d(C;) for all i € F;
(2) fijo fik = fu foralli, j, k € F such that : < j < k.
Then
Si= ((Ci)ieF, (fz’j5 Oj - CIL) i,ij<€jF>

is a filtered system in C. Assume C' € C and (f;:C; — C)er is a family of
morphisms such that ¢ < j implies f; o f;; = f; (i, j € F). Then

(07 (fi: Ci — O)ieF)

is compatible with the filtered system S. Assume (C, (fi:Ci — C’)iep) also has the
property that, for any (C’, (fl:C; — C’)Z-GF> compatible with S, there is a unique

morphism f: C' — C’ such that fof; = f/ foralli € F. Then (C, (fi:Ci — C)iep)
is a filtered limit of S.
Let (D;);cr be a family of objects of C and
(9ij: Di = Dj)iger
a family of morphisms with the following properties:
(1) gi;s = id(D;) for all i € F;
(2) gjk ©gij = gix for all 4, j, k € F such that i < j < k.
Then
T:= ((Di)i€F7 (9ij: Di — Dj)i»iﬂff)

is an inverse system in C. Assume D € C and (g;: D — D;)icr is a family of
morphisms such that ¢ < j implies g;; 0 g; = g; (¢, j € F'). Then

(D, (9i: D — Di)ieF)
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Priestley powers of lattices and their congruences 11

is compatible with the inverse system 7. Assume (D, (9i: D — Dy)ic F) also has the
property that, for any (D’, (¢;: D" — Di)iep) compatible with 7, there is a unique

morphism g: D’ — D such that g;og = ¢, for all i € F'. Then (D, (9:: D — Di)iep)
is an inverse limit of T.

A result will be referred to without a section number in the section in which
it appears.

3. Continuous function duals of semilattice homomorphisms

In this section we show how various posets of Slat-morphisms may be vie-
wed as posets of continuous order-preserving maps from a Priestley space into an
ideal lattice with an appropriate topology (Theorem 6, Corollary 7, and Corollary
8). We then show how Priestley relations, introduced in [3] as the duals of {0}-
V-homomorphisms between bounded distributive lattices under Priestley duality,
correspond naturally with such function spaces (Proposition 12).

Lemma 3.1. Let A be an algebraic lattice. The family {1k | k € k(A) } is closed
under finite (including empty) intersections and is a basis for X.
Hence {1k |ker(A)}U{A\ Tala€ A} is a subbasis for A.

Proof. See [12], Corollary I1.1.15.

Lemma 3.2. Let A be an algebraic lattice and let P € P and p € P. Let

ge Slat((%(A), v,oA), (u(P),m,P)>.
Then {k € k(A) | p € g(k)} € k(A)?. Hence for all ky € k(A),
ko <| {kenr(A)|peglk)} < peglk).

Proof. Let I:={ker(A)|peg(k)} Asg(04) =P, we have 04 € I.

If ko € k(A), k € I, and ko < k, then p € g(k) C g(ko), so ko € I.

If ko, k1 € I, then p € g(ko) Ng(k1) = g(ko V k1), so ko V k1 € I. Therefore
I e k(A)e.

By the isomorphism between (A)? and A of §2, for all k € k(A), k < | |I if

and only if k € I. .
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12 J. D. FARLEY

Lemma 3.3. Let A be an algebraic lattice and let P € P. Let f: P — A be a map.
Assume

{f7 (k) [k er(A)}

is finite. Then for all a € A, there exists k €|,,a)a such that
FHra) = (k).
Proof. Let a € A. Let ko € |;(a)a be such that F~1(1 ko) is minimal in

{f7'Tk) [k €luayal

Then for all k € x(A) such that kg < k < a, we have f~3(T k) = f=Y(] ko).
Therefore
Paa=r( N )= N
kerk(A)Nla kerk(A)Nla
= () k) =f"(Tko.
ker(A)

Lemma 3.4. Let A be an algebraic lattice and let P € P. Let f € AE. The
following are equivalent:

(1) feAf;

(2) for all k € k(A), f~Y(Tk) is closed.
In either case, for all k € k(A), f~Y(Tk) € D(P).

Proof. See [16], §V.

Lemma 3.5. Let A be an algebraic lattice and let P € P. Let f € AL. The
following are equivalent:

(1) feAP;

(2) Im f is finite;

(3) {f7Y(1k) |k €r(A)} is finite.
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Priestley powers of lattices and their congruences 13

Proof. (1)==-(2). The implication holds because P is compact and f is a conti-
nuous map into a space with the discrete topology, so Im f is compact and hence
finite.

(2)==(3). For all k € k(A),

ok =U{f @) |acimfandk<a}

so there are at most 2" elements in { f~1(1 k) | k € k(A) } where n is the size of
Im f.

(3)=(1). By Lemmas 3 and 4, { f"'(Ta) | a € A} is finite and f~1(] a) is
clopen for all a € A. Let a € A. Then

{f'ab)|beAanda<by={f'(1b;)|i=1,...,n}

for some n >0, b; € A such that a < b; (i =1,..., n). Then

fa)=f"Ta)\ (U{ F7H1b) ‘ b € A where a < b})
= (Usam),
i=1

which is open. Hence f € AF. -
Theorem 3.6. Let A be an algebraic lattice and let P € P. By x(A) and U(P) we
shall mean the objects (K(A), \/,0,4) and (U(P),ﬂ,P) of Slat. Define a map

U: AL . Slat (I{(A),U(P))
as follows: for f € AL and k € k(A), let

[C()](k) = fH(Tk).

Define a map

®: Slat (n(A),Z/I(P)) AR
as follows: for g € Slat (K(A),U(P)) and p € P, let

[@(9))(p) :=|_|{k € w(A) | pegk)}.
Then ¥ and ® are mutually-inverse order-isomorphisms. The restriction of W
to AL maps onto Slat(%(A),D(P)). The restriction of ¥ to AT maps onto

Slatf™ (H(A), D(P)) .
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14 J. D. FARLEY

Proof. Let f € AL, k, ki, ko € k(A). As f is continuous and order-preserving,
by Lemma 1 f=Y(Tk) € U(P). Also f~1(104) = f~1(4) = P.
Finally £~ (1 (kv k2)) = £ ((1k) 0 (Th2)) = £~ (T k) 071 (T k). So
the map k — f~'(1k) [k € #(A)] is in Slat (n(A),L{(P)). Thus ¥ is well-defined.
Let f1, fo € AE be such that f; < fo. For k € k(A),

[W()k) = (Tk)={peP|k<filp)}
C{peP|k<falp)}=f'(1k) =

Hence U(f;) < U(f3), so U is order-preserving.
Let g € Slat (n(A),U(P)) and pg € P. By Lemma 2,

(W (f2)](F).

{kenr(A)|po€glk)}

is directed. Let ko € x(A) be such that | [{k € x(A) | po € g(k)} €] ko. By
Lemma 2, po € g(ko). As g(ko) is open, we conclude that the map

p—| [{ker(d)pegk)} (peP)

is continuous from P to A with the Scott topology, by Lemma 1.
Let p1,p2 € P be such that p; < py. Let kg € k(A) be such that p; € g(ko).
Then ps € g(ko), because g(ko) is an up-set. Therefore

| [{ker(A) | pegk)} <| [{ker(A)]peglk)}.

We conclude that the map p — | [{k € k(A) | p € g(k)} is order-preserving.
Therefore ® is well-defined.
Let g1, g2 € Slat (I{(A),Z/{(P)) be such that g1 < g2 and let p € P. For

k € k(A), p € g1(k) implies p € g2(k), so
[@(90)](p) = |_J{k € w(A) | p € gi(k)}
<| [{ker(A)|pegk)} =)0

Hence ®(g1) < ®(g2), so @ is order-preserving.
Let f € AE. For py € P,

[(® 0 ) (H))(po) = | _[{k € K(A) | po € [(T()I(K) }
=| fFerA) poef(1h)}
= |_|{k € k(A) | k< fpo) } = f(po),
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Priestley powers of lattices and their congruences 15

so (@ o W)(f) = f. That is, ® o ¥ =id(AL).
Now let g € Slat (K(A),Z/I(P)). For ko € k(A),

(W0 ®)(g)](ko) = [@(9)] (T ko) = {p € P | ko < [®(g)](p) }
:{pEP‘k‘OSU{kEFa(A) \pEg(k‘)}}.
By Lemma 2, we have
(¥ o@)(g)](ko) ={p € P|pe glko)} = g(ko),

s0 (T o®)(g) =g. That is, To d =id {Slat (I{(A),U(P))] Therefore, ¥ and @
are mutually-inverse order-isomorphisms.
Let f € AE. By Lemma 4, f € AL if and only if

U(f) € Slat (K(A),D(P)).
By Lemma 5, f € AT if and only if Im W(f) is finite and

U(f) € Slat (K(A),D(P)).

The next corollary follows from Theorem 6 using the D-P dictionary for
ideals mentioned in §2. It explains the “curious duality” behind the representation
of modular lattices of the form M{ | where M3 is the five-element non-distributive
modular lattice and P a finite poset ([25], §1, Construction 1).

Corollary 3.7. Let (S,V,0s) € Slat, T € D. We regard T and T as the ob-
jects (T, N\, 17) and (T?,N,T) of Slat, respectively. Let @:k(T°) =2 T be the iso-
morphism o(lt) =t (t € T). Define a map

W: (8Z)P™) - Slat(S,T7)
as follows: for f € (SZ)F™) and s € S, let

[w(N](s) = {teT|se( ) lor(®)]}.

Define a map
®:Slat(S, T7) — (Sg)7™
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16 J. D. FARLEY
as follows: for g € Slat(S,T7) and F € P(T), let

[@(@I(F) :={seS|Fng(s)#0}

Then ¥ and ® are mutually-inverse order-isomorphisms.
Define W': (7)) — Slat(S,T) as follows: for f € (ST and s € S, let

W(N)s) =] (9(N) (5)].

Define @':Slat(S,T) — (S{)FT) as follows: for g € Slat(S,T) and F € P(T), let

Then ©' and ® are mutually-inverse order-isomorphisms. The restriction of W' to
(89)P(T) maps onto Slat™ (S, T).

By reversing the order of T', we get the following.

Corollary 3.8. Let (S,V,05) € Slat, T € D. We regard T as the object (T,V,0r)
of Slat. Let ¢: k(T™) — T be the dual-isomorphism o(1t) =t.

Define the map ¥': (S{2)P(T) — Slat(S, T) as follows: for f € (S2)FT) and
seS, let

WD) = p({teT|seVJIPD\ pr(t)]}).

Define a map
®':Slat(S,T) — (552)F™)

as follows: for g € Slat(S,T) and F € P(T), let
[@"(9)](F) = g~ (T'\ F).

Then O and ® are mutually-inverse order-isomorphisms. The restriction of ¥’ to
(899)P(T) maps onto Slat™ (S, T).

It has been shown that if L is a finite lattice, then Slat(L, L) € D if and only
if L € D (see [14], Theorem 3). Indeed, if L € D and L is finite, [14], Lemma 1
states that LY (1) = Slat(L, L). We also have the following
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Corollary 3.9. Let L € D be finite. Then
)
LI0) (Slat(L,L)) .

Therefore Slat(L, L) is self-dual.

Proof. As L is finite, L = L and P(L) = {1j|j € J(L)} = J(L)°. .
Indeed, Slat(L, L) is the coproduct of L and L? in D for a finite distributive
lattice L. (See [5], Corollary 2.3; [6], Theorem and Corollary; and [24], Theorem.)
Under Priestley duality, continuous order-preserving maps between Priestley
spaces P and @ correspond to {0, 1}-preserving homomorphisms between D(Q)
and D(P). In [3], {0}-V-homomorphisms were shown to correspond to certain
relations between P and Q.

Let P,QeP;let RCPxQ. Forpe P, R(p) :={qe Q| (p,q) € R} For
VCQ, R (V):={peP|R({p)NV #0}. The relation R is a Priestley relation
if

(1) R(p) is a closed down-set of @ for all p € P;
(2) R7Y(V) e D(P) for all V € D(Q).
Let R(P, Q) denote the set of Priestley relations from P to Q.

For R € R(P,Q), let R*: D(Q) — D(P) be the function R*(V) = R~1(V)
(V € D(Q)) By [3], Lemma 1.5, it is a {0}-V-homomorphism. Indeed, the map

Re—R"  [ReR(PQ)

is a bijection between R(P, Q) and Slat (D(Q), D(P) ) (where we regard D(P) and
D(Q) as {0}-U-semilattices).

We shall turn R(P, Q) into a poset as follows: for R, S € R(P,Q), R < S if
and only if R(p) C S(p) for all p € P.
Lemma 3.10. Let P, Q € P, R€ R(P,Q). Then for allp € P,

Q\R(p) = J{veD@)I|p¢gR(V)}

Proof. For all p € P, the set @ \ R(p) € U(Q). By the isomorphism of §2,

Q\R(p) = H{VeD@Q) IV CQ\Rp}
= {VveD@)|RP CQ\V}
= {veD@Ip¢R(V)}
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Lemma 3.11. Let P, Q € P. The map
R— R* [R e R(P,Q)

from R(P,Q) to Slat [(D(Q), U, @), (D(P), U, @)} 18 an order-isomorphism.

Proof. Let R, S € R(P,Q). First assume R C S. Then for all V € D(Q)

R'(V)=R(V)={pe P|R(p)NV #0}
C{peP|SE)NV A0} =5"'(V)=5(V).

Therefore R* < S*. Hence the map is order-preserving.
Now assume R* < S§*. By Lemma 10, for all p € P,

Q\S@)={VeD@I|p¢s(V)}

cUtven@lp¢ B(V)} =Q\R®),
so that R(p) C S(p). Therefore R C S. Hence the map is an order-embedding.
As the map is onto, it is an order-isomorphism.

Now we establish the connection between our function space representation
of Slat-morphisms and Priestley relations.

Proposition 3.12. Let P, Q € P. We regard D(P) and D(Q) as {0}-U-
semilattices. Define )
0: R(P,Q) - UQ)Y

as follows: for R € R(P,Q) and p € P, let

[0(R)](p) :== Q\ R(p)-

Define
U U(Q)L” = Slat (D(Q),D(P))
as follows:
[WHIV) =P\ fueV)  IfFEUQL . VeDQ)
Define

®': Slat (D(Q), D(P)) — U(Q)fa
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as follows: for g € Slat (D(Q)7 D(P)) and p € P, let

[@(9)](p) = J{V € D@Q) [ £ 9(V)}.

Then:
(1) 6 is a dual-isomorphism;
(2) ¥ and @' are mutually-inverse dual-isomorphisms;
(3) for all R € R(P,Q),
(U 00)(R) = R*.

Proof. By Theorem 6, ¥’ and ®’ are inverse dual-isomorphisms.
For R € R(P,Q) and p € P,

[ (R)](p) = {V e D@Q) |p¢ R (V)} = Q\ R(p)
by Lemma 10. Hence 6 is well-defined and ®'(R*) = 6(R), so
(V' 0 6)(R) = R*.

4. Profinite posets and Priestley powers

In [28], Theorem, it is shown that every Priestley space P is an inverse limit
of finite posets with the discrete topology. Although the proof requires minor
modifications, the basic idea is to partition the space into finitely many parts and
place a partial order on the set of equivalence classes (if possible) so that the natural
projection map is continuous and order-preserving. The inverse limit of the filtered
system of these ordered partitions will be the original Priestley space (Proposition
6). If one does this same procedure with P, a priori one will get more partitions.
We show, however, that P is in fact the inverse limit of the unordered versions of
the partitions arising from P (Proposition 7).

If M € Lat U Slat, then, for each of the above partitions II of P, one gets
a Priestley power M, and the filtered limit of these is M¥ (Proposition 14).
For P, however, we are not using all the partitions that arise from P necessarily,
but only those arising from P. While the inverse limit of each filtered system of
partitions (the one arising from P, the other from P) is P, we must prove that the
corresponding filtered limit is M (Proposition 15). We use a lemma, interesting
in its own right, to show that if a Priestley space is an inverse limit of two filtered
systems of finite antichains, then any partition arising from one system may be
refined to yield a partition arising from the other system (Lemma 9).

The first lemmas are easy.
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Lemma 4.1. Let P be a set, II, 1y partitions of P such that II1 < Ily. Then

Vi1, = VIL,11, © VII-

Lemma 4.2. Let P € P. Then:
(1) every Il € Ep is a finite poset, the elements of which are non-empty clopen
subsets of P;
(2) for allT1 € Ep, vi: P — 11 is continuous, order-preserving, and surjective;
(3) for allT1, Ty € Ep such that T < Ty,

VIL,IIp- I — HO

is order-preserving and surjective;
(4) &p C &5

Lemma 4.3. Let P € P; let Q be a poset. Let f € QF. For each ¢ € Im f, let
Vo= f71q); let 11 := {V, }yetm - Define g:11 — Q by g(V,) := q for all g € Im f.
Then 11 € Ep, g is order-preserving, and f = g o v.

Proof. Clearly II is a partition of P into open subsets. We now prove that the
quasiorder <y is antisymmetric. Let ¢, r € Im f. Assume that V;, <g V,. Then
for some n > 1, there exist q1,...,q, € Im f such that

Vq:Vql jn...jr{vn:VT.

As f is order-preserving,

so g <r. Thus, if ¢, r € Imf, V;, <pg V;,, and V. < V,, then ¢ = r and hence
Vq = Vi. Therefore <y is antisymmetric. We conclude that II € £p.

The above shows that g is order-preserving and clearly f = g o vyy.

Proposition 4.4. Let P € P. The poset Ep is filtered.
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Proof. If P = (), the partition with no equivalence classes is in Ep. If P # 0, the
partition {P} € Ep. In either case, Ep # .
Now let Iy, II; € Ep. By Lemma 2 (2),

v, :==vp,: P —1I; (i=1,2)

is continuous and order-preserving. Thus the map v: P — II; x II; defined by
v(p) == (1/1 (p), v2 (p)) (p € P) is a continuous order-preserving map into an ordered
space with the discrete topology. For ¢ € Imv, let V;, := v~(q). By Lemma 3,

II:= {Vq}qelmu €&p.

Clearly II < IIy, II,.

Lemma 4.5. Let P € P.
(1) If U € D(P) is non-empty and proper, then {U,P\U} € Ep.
(2) If p, g € P and p £ q, then there exists I1 € Ep such that vii(p) £ vi(q).

Proof. (1) This part is obvious.
(2) There exists U € D(P) such that p € U and ¢ € P\U. Let II := {U, P\U%

Proposition 4.6 ([28], Theorem). Let P € P. Then

((H)H€5P7 (v, i — 1) Hszesp)

I <I,
s an tnverse system in P with inverse limit
(P, (vi: P — H)ne&:)
Proof. By Proposition 4, Ep is filtered, and it is clear from Lemma 2 that
T := ((H)H€5P7 (v, m,: 11 — Ilp) leanSP)
1, <1,
is an inverse system in P. By Lemma 1,

(P, (v P — H)Hegp).

is compatible with 7.
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Assume

(@ (gm:@ = Mynee,. )

is also compatible with 7. We prove that, for each ¢ € Q,

N ' (9n0)

IIe€Ep

is a singleton.

By Lemma 2 (2), Cpy := uﬁl (gn(q)) is clopen and non-empty for all IT € Ep.
If I14,... II,, € Ep for some n > 0, there exists Il € Ep such that II < IIy,...,II,.
As Cpp # 0, there exists p € P such that vi(p) = gn(g). By Lemma 1, for
t=1,...,n,

v, (p) = (v, o vn) (p) = (v, © gn)(q) = gn,(q)

by compatibility, so
n
pE m Cn,.
i=1

By compactness,

m Cn # 0.

IIe€Ep

If p, p € P and p # p’, by Lemma 5 (2) there exists II € Ep such that
vi(p) # v (p’). Hence
N cn

IIe€p

contains a unique element g(q).
We prove that g: Q — P is continuous and order-preserving. Let U € D(P)
be non-empty and proper. Let p € U. Then Il := {U,P\ U} € £Ep by Lemma 5

(1) and g’ (v1(p)) = 9" ({U}) € D(Q). We have

viog=gn =g 'ovy =g’
ﬁgiloyﬁlounzgﬁloyn
— g ' (U) = (g7 oy ovm)(p) = (95" o vn)(p) € D(Q).

Hence g: Q — P is order-preserving and continuous. Uniqueness is clear.
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Proposition 4.7. Let P € P. Then
((ﬁ)nefm (Vﬁl " ﬁ1 - ﬁ2) Iy ,lIp€€p )

<,
s an inverse system in P with inverse limit
(P, 0 P = Mnee, ).
Proof. Using Proposition 6, we see that
T = ((ﬁ)negp, (v, 1, T — o) e )

is an inverse system in P with which
(P. (v P - Mnee.. ).

is compatible.
Assume

<Q7 (gn: Q — ﬁ)ne£p>

is also compatible with 7. For each II € &p, let gr: Q — II be the continuous
order-preserving function gr(q) := gn(q) (¢ € Q). Then

(@ (9m:Q — Mnee, )

is compatible with the inverse system

((H)Hegp, (Z/th?:Hl — Hg) My, TIge€p )

Iy <TIy

(see Proposition 6). Hence there is a unique continuous order-preserving function
g:Q — P such that vyog =g for all IT € Ep.
For all ¢, r € @, ¢ < r implies g(q) = g(r). For otherwise by Lemma 5 there

exists IT € Ep such that vy (g(q)) 7 v (g(r)) so that gri(q) 2 gr(r) and hence

gri(q) # gn(r). As II is an antichain, we have gr(q) £ gn(r), so that g is not
order-preserving, a contradiction.

Hence the map g: Q — P defined by g(q) := g(q) for all ¢ € Q is continuous
and order-preserving. Moreover for all Il € £p, v7 o0 g = gn.

Assume h: ) — P is a continuous order-preserving map such that vgoh = gn
(IT € €p). Define h:Q — P by h(q) := h(q) (¢ € Q). Then h is continuous and

order-preserving, and vy o h = gry (I € Ep); hence h = g, so that h = g. .
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Lemma 4.8. Let F be a filtered poset, (P, (9i: P — B)ieF> an inverse limit in P
of the inverse system
((PZ)’LEF7 (gm P, — P; )1 J€F>

i<j

Then:

(1) ¢ < j implies Im D(g;) € Im D(g;) (i, j € F);
(2) {ImD(g;) | i € F} is directed;

(3) D(P) = ‘EJFImD(gi)-

Proof. (1) Let 4, j € F be such that ¢ < j. Then g;; 0 g; = g; implies
D(gi) o D(gij) = D(g5),

so that Im D(g,) C Im D(g;).
(2) This statement follows from (1) and the fact F' is filtered.
(3) By Priestley duality,

Si= ((D(Pi))ieF, (D(gis): D(Py) = D(Py)) F>
is a filtered system in D with filtered limit

(p0). (D@ DRy~ DP) ).

Let D := {Im ( ;) | i € F}. Then M := |JD is a {0,1}-sublattice of
L := D(P) by (2). For i € F, let fl: D(P;) — M be the {0,1}-homomorphism
defined by f!(a) = [ ( g:)](a) (a € D(Pi)). For i, j € F such that ¢ < j and
a € D(P)),

[fi © D(gij)(a) = [D(g:)

so that (M, (fl: D(P;) — M)iep> is compatible with S. Hence there exists a
unique {0, 1}-homomorphism f: L — M such that f o D(g;) = f/ (i € F'). For all
i€ FandaeD(P), [foD(g))(a) = fi(a) = [D(g:)](a).

Let h: L — L be the {0, 1}-homomorphism defined by h(a) := f(a) (a € L).
As ho D(g;) = D(g;) (i € F), we see that h = idy, so that Im f = L and hence

M = L.
]
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Lemma 4.9. Let F and K be filtered posets. Let (P, (gi: P — Pi)iep) be an inverse
limit in P of the inverse system

((Pi)iEF7 (gij: P — Pj)i,jeF).

i<

Let (R (hg: P — Qk)keK) be an inverse limit in P of the inverse system

((Qk)k€K> (hkm: Qr — Qm) ke )

Assume that g;: P — P; and hy: P — Q. are surjective and that P; and Qy are
finite antichains (i € F, k € K ).

Then for all k € K, there exists i € F' for which the following holds: for all
p; € P;, there exists qi, € Qy such that gi_l(pi) - h;l(qk).

Proof. Let k € K. By Lemma 8 (3), Im D(hy) C |J Im D(g;). Hence by Lemma
i€F
8 (2) there exists i € F' such that Im D(hy) C Im D(g;).
As Im D(hy) is a {0, 1}-sublattice of Im D(g;),

a<lpp = \/{b € D(P) | bis an atom of Im D(hg) }
for every atom a of Im D(g;), so there exists an atom b € Im D(hy) such that a < b.
That is, for every p; € P;, there exists ¢ € Q) such that g;l(pi) - h,;l(qk)‘ .
The next result is easily seen to be true.

Lemma 4.10. Let P, Q € P, M € Lat USlat. Let v:P — Q be a continuous
order-preserving map. Define p: M9 — MP by u(f) :== fov for all f € MS.
Then:

(1) w is a morphism;

(2) w is injective if v is surjective.

Lemma 2 (2) and (3) and Lemma 10 yield the following,.

Lemma 4.11. Let P € P, M € Lat U Slat.
(1) For every 11 € Ep, pdl: M™ — MP is an injective morphism;
(2) For every I1, Iy € Ep such that II < Iy,

pit g, MO — MM

is an injective morphism.
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Lemma 4.12. Let P € P, M € Lat U Slat.
(1) ForIl € &Ep, pify = id(M™).
(2) For Hl, HQ, Il € Ep such that II; <1l < Hg,

M M _ M
A1, 115 © H11,,115 = My, 105

(3) For1IIy, Iy € Ep such that Ty < Tly,
T, © [T, 1, = A -

Proof. (1) This part is obvious.
(2) Let f € M"s. Then

(:ulj'\[{,l'lg © ,u'l']\f[g,l'[g,)(f) = f O VI, 113 © VI, ,I1,

= f oV, s = /’(‘IJ_\I/Il,Hg(f)'

(3) Let f € M2, Then

(/Jr]\f[l ON%,HQ)(f) = fovm, m, ovm
:foynz :M%(f)

by Lemma 1.

Lemma 4.13. Let F be a filtered poset. Let
S:= ((Ci)ieFa (fz‘jiCj - Ci)i%%]_l’)

be a filtered system in Lat U Slat with which (C, (fi:C; — C)iep> s compatible.
Assume:

(1) = U Imf;
ieF
(2) foralli € F, f; is injective.

Then (C, (fi:C;i — C)i€F> is a filtered limit of S.
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Proof. Assume (C”, (fl:C; — C’)iep> is compatible with S. Define

f:Cc—=C

as follows: if ¢ € C' and ¢ = f;(¢;) for some ¢ € F and ¢; € C;, let f(c) := fl(c;) €
C.

The map is well-defined. For if ¢ = f;(c;) = fr(ck) for some j, k € F, ¢; € Cj,
ci, € C, there exists ¢ € F' such that ¢ < j, k. Hence

c=(fio fij)(cj) = (fio fix)(ck),

so that fij(cj) = fix(cr). Now (ff o fij)(c;) = fj(c;) and (ff o fir)(cx) = fr(ck).
If ¢, d € C, then there exist j, k € F such that ¢ = f;(c;) and d = fi(ck)
for some ¢; € C; and ¢, € Ck. There exists i € F such that i < j, k, and

c=(fio fij)(cj), d= (fio fir)(ck). ThusevVd=f; (fij(cj) \ fik(ck))a SO

flevd) = fi(filen) V fulen))
= (o fip)(es) v (F] o fu)(ex)
= [}{e) V filer) = F(0) V F(d).

—~

(If f € Lat, then it preserves meet as well.) Hence f is a morphism. Uniqueness

is clear.
| |

Cf. (2) below with [18], Theorem V.4.1.

Proposition 4.14. Let P € P, M € Lat U Slat. Then:

(1) MP = U T
IIeép

(2) (MP, (u: M — MP)H65P> is a filtered limit of the filtered system

((MH)H€€P7 (/~}J%41,1'[2:]\4H2 - Mnl) oy Ie€p );

T <TlIg
(3) for Iy, Iy € Ep, T} < Tly implies

Imur]‘[/g C Imu%.
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Proof. (1) Let f € M?. By Lemma 3, there exist IT € £p and an order-preserving
map g: 1T — M such that f = govy = uM(g).
(2) By Proposition 4, Ep is filtered. By Lemma 12,

8 1= (MMneep, (uff, s M™> — M™ ), mee.. )

Ty <Tlg

is a filtered system with which
(M.l M M),

is compatible. By (1) and Lemmas 11 and 13, it is a filtered limit of S.
(3) This part follows from (2).

Proposition 4.15. Let P € P, M € Lat U Slat. Then:

(1) MP = {J Tmp;
IIe€Ep

(2) (Mﬁ, (ul‘ﬁ/fz MY Mf)negp> s a filtered limit of the filtered system

((MH)HEEP7 (,U%{,ﬁ;Mlh — MHI)H1,H2€5P>;

Ty <Ilp
(3) for Iy, Iy € Ep, I} < Tly implies

Im,u%/[2 C Imu%/[l.

Proof. (1) Let f € MP. By Lemma 3, there exist Il € &5 and a map g € Mo
such that

f=govn,.
By Propositions 6 and 7 and Lemma 9, there exists IT € £p such that IT < IIy. By

Lemma 1,

M
f:goyHO:gopﬁ’HoovﬁeImMﬁ.

(2) By Proposition 14,

S:= ((MH)HegP, (M%{’ﬁ; MM MHl)nl,ngesP)

Iy <My

is a filtered system with which

(M7, (udd: M™ — MP)nice, )

Acta Sci. Math. (Szeged),62:1—2(1996)
All rights reserved @ Bolyai Institute, University of Szeged



Priestley powers of lattices and their congruences 29

is compatible.
By (1) and Lemmas 11 and 13, it is a filtered limit of S.
(3) This part follows from (2).

5. Compact congruences of Priestley powers

In this section we prove that, for L € Lat and P € P, Comp(L?) =
(Comp L) (Theorem 10). We use a suggestion from [23], pp. 98-100 about
obtaining the semilattice of compact congruences of a limit of lattices L; as a limit
of the semilattices Comp L;.

In [23], p. 98 and [11], §3, two prescriptions are given for functors from Lat
to Slat given by L — Comp L (L € Lat). We show that these two prescriptions
yield the same functor (Lemma 3).

Our first lemma is a consequence of [19], Theorem 1.20. The second is a
corollary, but we use an easy proof suggested by Dr. P. M. Neumann.

Lemma 5.1. Let L € Lat, X C L x L. Define A,(X) (n > 0) by induction:

Ap(X) =X U{(a,b)]| (b,a) e X} U{(a,a)|a€ L}
Apt1(X) = A,(X)UQn(X)UT,(X)
where
QH(X) = {(a1 \/a27b1 \/bg), (a1 /\ag,bl N bg) | (aiabi) S An(X) (Z = 1, 2) },
T,(X) :=={(a,¢) | (a,b), (b,c) € A, (X) for somebe L}.

Then 9L (X) = | A.(X).

n>0

Lemma 5.2. Let L, M € Lat, X C L x L. Let f:L — M be a homomorphism.
Then

(f x A 0™ ((F x fIX]).

Proof. Let p := 19M((f X f)[X]), and let ¢ := (f x f)7!(p). Since f is a
homomorphism, ¢ € Con L. Clearly X C g, so ¥~ (X) Cs. Hence

(f x HHEO] M ((f x £)IX)).
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Lemma 5.3. Let L, M € Lat, and let f: L — M be a homomorphism. Let n > 0,
ai, b €L (i=1,...,n). Then

Comp(PI(\ 9" 00) = V9" (7000, 1),

Hence Comp is a functor from Lat to Slat.

Proof. Clearly .\Z 0™ (f(ax), £(b:)) € [Comp( f)](‘\;}l 9"(as,bs)). By Lemma 2,

(f x DIV 95 (@i 0) €\ 0¥ (@), £(5)).

so that
(Comp(NI(V/ 9" (ab0)) € \/ 0¥ (@), £(80)
Thus : :
(Comp(N)(\/ 9% (as,b0)) = \/ 9 (F(ar), 1 00)). .
1=1 =1

In [9], Theorem 2.1, it is proven that, for L € Lat, P € pin Con(LF) =
(Con L)™, where n is the cardinality of P. (Also see a similar result for certain
lattice-ordered algebras, [8], Theorem 3.5.) The proof is by induction on n. We
present essentially the same proof below, only we have made it direct.

First we state some lemmas.

Lemma 5.4. Let L € Lat, P P™ o, be L, pe P. Then

mp(a,b,p) € L

Lemma 5.5. Let A, B be algebraic lattices. Then k(A x B) = k(A) x k(B). For
n >0, k(A") = k(A)™.

Lemma 5.6. Let L € Lat, Pe P™ pe P a,be L, fy, go € LY, 6 € Con(LP).
Assume fo(p) = a, go(p) = b, and (fo,g0) € 0V xp. Then

(f,9) €0V xp
for all f, g € LY such that f(p) = a, g(p) = b.
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Proposition 5.7. Let L € Lat, P € P, Then:
(1) for 6 € Con(L?) and p € P,

[Cp@)](p) ={(a,b) e LX L[ (f,9) €0V xp
for some f, g € LY such that f(p) = a, g(p) =b};

2) T, and A’ are mutually-inverse order-isomorphisms;
P P
(3) Tp maps Comp(L?) onto (Comp L)¥.

Proof. For a € L, let a € L¥ denote the constant map with value a.

By Lemma 6, I'V := I'}; is well-defined, as is A’ := A’;; (1) also holds. Both
IV and A’ are order-preserving.

Let 6 € Con(L”). Let f, g € L. Then

(f:9) € (A oT)(0) < (f()9(p) € I'O)(p) for all pe P
<~ (f,g) €0V xpforallpe P

= (f.9e NV

peEP

= (f,9)eov \ x»
peP

— (f,9) €6.

Thus (A" oT")(0) = 0, so that A" oT” = idcon(LP)-
Let F € (ConL), a, b € L, py € P. First assume (a,b) € F(pg). Then for
all p € P, ([mp(a,b,p0)|(p): [mp(b,a.po)] (p)) € F(p), so that

(mp(a, b, o), mp(b, a,po)) e A(F)

and hence
(a,b) € [(T" o A")(F)](po)-

Therefore F < (I o A")(F).
Now assume (a,b) € [(TV o A")(F)](po). Then

(f.9) € A(F)V xp,
for all f, g € LT such that f(py) = a, g(po) = b. Hence

(@,b) € A'(F) V Xp,-
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Thus for some n > 1, there exist f1,...,f, € L¥ such that a = f1, b = f,, and for
1<i<n,

A'(F)  if i odd,

Xpo if ¢ even.

(fis fiv1) € {

Therefore (a,b) € F(py). Hence (I"oA’)(F) < F, so that (I o A’)(F) = F. We see
that IV o A’ =id Thus IV and A’ are inverse order-isomorphisms, which is

2).

Statement (3) follows from (2) and Lemma 5.

(Con L)P"

Lemma 5.8. Let L € Lat, P, Q € P™. Let v: P — Q be order-preserving. Let
v: P — Q be defined by v(p) := v(p) for all p € P. Define u: L? — L¥ by

p(f):=fov  (feL®).
Define ji: (Comp L)@ — (Comp L)T by
[(F):=Fow (F¢ (CompL)®).

Then:
(1)

I'p o Comp(u) o Ag: (Comp L)a — (Comp L)?

is a {0}-V-homomorphism and equals fi;
(2) if v is surjective, then Comp u is injective.

Proof. By Lemma 4.10, ;1 and j are Lat- and Slat-morphisms, respectively, so
Comp(p): Comp(L?) — Comp(L”)

is defined. By Proposition 7, I'p o Comp(p) o Ag is an Slat-morphism. Fix ao,
bo € L, qo € Q. To prove (1), it suffices to show

(Tp o Comp(n) 0 Ag ) (F) = i(F)
for F € (Comp L) defined by

9 (ao,bo)  if ¢ = qo
F — ) b)
(q) { OConL if q 7é q0-

Thus for f, g € L9, (f,9) € Ag(F) if and only if
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(1) (#(a0)-ga0) ) € 9 (a0, bo) and

(2) f(q) =g(q) for all ¢ € @\ {qo}
Let

n:={(h,k) e L¥ x L* |(h(p), k(p)) € 95 (ag, by) for all p € v~ (qp)
and h(p) = k(p) for all p € P\ v=1(qo) }.
Then 7 € Con(L") by Proposition 7, and (u x u)[Ag(F)] C n.

Assume 6 € Con(L?) and (1 x p)[Ag(F)] C 6. Assume (a,b) € 9 (ag, bo).
Then (mQ(a,b, qo),mQ(b,a,qo)) € Ag(F); therefore

(1 X 1) (mcg(a,b7 qo),mQ(b,a,qo)) €0,

and so (mQ(a,b, qo) o v,mq(b,a,qo) o 1/) € 0, thus (a,b) € [I'x(0)](p) for all p €
v~ 1(qo). Hence
9" (a0, bo) € [Tp(9)](p)

for all p € v=1(qo). If (h, k) € n then

(h0), k() € TR O)]()

for all p € P, so (h,k) € . Hence n C 6. We have shown that
n = (Comp p) (AQ(F))-
Define G € (Comp L) as follows: for all p € P,

L : 1
Glp) == {g (ao,bo) ifp € v (q),
Con L else.

It is clear that Ap(G) =n. Moreover G = i(F'). Thus (1) holds.
Statement (2) follows from (1) and Lemma 4.10 (2). .
In [23], p.98 it is stated that Lat-embeddings map to Slat-embeddings under
Comp. One may construct a counterexample by considering the five-element non-
distributive modular lattice. The statement does hold for the embeddings with
which we are concerned, however.
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Lemma 5.9. Let L € Lat, P € P. For all 1l € Ep, Comp uk is injective.

Proof. Let 61, (2 € Comp(L™M) be such that
(Comp pifi)(01V) = (Comp pify) (0%).

For some n > 0,

o) — \/ 9L (fi(T)7g§T))

i=1

for some fi(r), gl(r) €IlM (i=1,..,nandr=1,2). By Lemma 3,
(Comp pufy) \/ O (1), ihi(0) =12,

By Lemma 1, there exists a finite subset S C L% containing un(f(r)) ph(g (T))
(i=1,...,nand r = 1, 2) such that if K is a sublattice of L containing S, then

\7 K (b (). i (9M)) = \/ K (b (1), uhi(6)).

As S is finite, by Propositions 4.4 and 4.14 there exists II' € £p such that IT' < II
and S C Tmpfi,. As pfi = pfp o pip ;p and gy, is injective [Lemmas 4.11 (1) and
4.12 (3)],

V0 (b ), e ) = \/«9L (b ). b (6))-

=1

Hence (Comp pff, 1) (0V) = (Comp pfi, 1) (6). By Lemma 8, Comp pf, 1y is in-

jective, so (1) = 9(2) .

The following proof utilizes an idea from [23], pp. 98-100. The theorem,
proved independently, appears in [15], Theorem 4.

Theorem 5.10. Let L € Lat, P € P. Then Comp(LY) = (Comp L)
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Proof. By Proposition 4.14 (2),
(Lpa (uit: L' — LP)HESp)
is a filtered limit in Lat of the filtered system
((LH)He&av (Mﬁl,r[z:LIb - Lnl)nﬁfégiza )

Hence

I <IIg

11 L . I I
<(Comp(L )>He£p’ (Comp i, 1, Comp (L") — Comp(L 1)) nl,n2€sp>
is a filtered system in Slat. By Lemma 8 (1), for Iy, Iy € Ep such that II; < Ty,
I, o Compl(ui, 11,) © A, = g5 s (Comp L)' — (Comp L)'

By Proposition 4.15,

1y <TlIg

ini Comp L, I, I,
(((Comp L) )H€5P7 (Nﬁ?ﬁz : (Comp L)"* — (Comp L) ) HLHQeSP)
is a filtered system in Slat with filtered limit
((Comp £)7, (45 ¥ (Comp L) = (Comp L) e ).

For each I € Ep, let ff; := Comp(uk) o Ap: (Comp L)T — Comp(LT). For
Hl, II; € Ep such that II; < HQ,

fﬁl o IU%TI%I;L = Comp(,uﬁl) oArq, o, o Comp(uﬁl,nz) o Ap,
= Comp(pf, ) o Comp(pfi, 11,) © A,
= Comp(ufi, © pft, 11,) © A,
= Comp(pfy,) o A,

by Lemma 4.12 (3). Hence there exists a unique Slat-morphism

F': (Comp L)F — Comp(L")
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such that
Comp L

Fopz"""" = Comp(uf;) o An

for all IT € £p. By Lemma 4.11, ,u%ompL is injective for all II € &Ep. If fi,
f2 € (Comp L)F and F'(f1) = F(f2), then by Proposition 4.15 there exist I € £p

and g1, g2 € (Comp L) such that
fi=ps™ (g (i=1,2),

Hence (Comp(uﬁ) o An) (1) = (Comp(uﬁ) ° AH) (92). By Proposition 7 and
Lemma 9, g1 = g2, so that f; = fo. Therefore F' is injective.

Now assume § € Comp(L”). Then for some n > 0, there exist fi,...,fn,
g1, - -,gn € L¥ such that

" P
0 = \/ o* (fir 9i)-
i=1
By Proposition 4.14, there exists II € Ep such that f;, g; € Impuk (i = 1,..., n).
Let h;, ki € L be such that fi = p&(hi), i = p& (ki) (i =1,..., n). Then

\/ 95" (hi, ki) € Comp(L™)

=1

and by Lemma 3

(Compuﬁ) (\/ ﬁLH(hi,k‘i)> = \/ ﬁLP(fiygi) =40
i=1

=1

so that F is surjective. Hence F' is an isomorphism.

6. The congruence lattice of a Priestley power of a lattice

In this section we determine the structure of the congruence lattice of a Pri-
estley power of a lattice in terms of the lattice and the Priestley space (Theorem
7 and Corollaries 8, 10, and 11). We derive as corollaries the known results that,
when the lattice or the space is finite, the problem of §1 has a positive solution
(Corollaries 12 and 13).

In §5 we determined the structure of the distributive semilattice of compact
congruences of a Priestley power of a lattice. To go from this semilattice to the
congruence lattice, we use Stone duality.
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Lemma 6.1. FEvery trivially ordered Priestley space is a Stone space.

Proof. Cousider a trivially ordered Priestley space. It is homeomorphic to P(B)
for some Boolean algebra B. This space has a basis consisting of the sets

{FeP(B)|lacF} (a € B).

The map
F+— B\F [F € P(B)]

is a bijection from P(B) to S(B), which has a basis consisting of the sets
{I €B?|Iprimeanda¢l} (a € B),

so that the map is a homeomorphism.

Lemma 6.2 ([29], Lemma 6). The product of sober spaces is sober.

Lemma 6.3. Let X and Y be Stone spaces. Then X XY is a Stone space with

basis {U x V |U € CO(X),VeCOY)} CCOX xY).

Proof. Obviously X x Y is Ty and has basis
{UxV|UeCOX),VeCOY)}CCOXXY).

By Lemma 2, it is sober. .

Lemma 6.4. Let X and Y be Stone spaces and J a set. For all j € J, let S; €
COX) andT; € CO(Y). Let R:= |J (8; xTj) € O(X xY). Then:
jeJ
(1) forally e,
UtV eco) |0 fyy SRy =|J(S, |5 € J andy € T )

(2) for all W € CO(X),
{yEY‘WQU{UEC(’)(X)‘Ux{y}gR}}e(’)(y);
(3) forallyy €Y,

ﬂ{Tj|j€Jandy0€Tj}ﬁﬂ{Y\Tj|j€Jcmdy0¢Tj}
is a subset of the set of all y € Y such that

U{U1€C(9(X)‘le{yo}gR}:U{UQGCO(X) U2x{y}§R}.
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Proof. (1) Fixy €Y. Let U € CO(X) be such that U x {y} C R. Then for all
u € U there exists j, € J such that

(U,y) € SJu X T7u
Henceue {S;|jeJand yeT}}.
Now assume j € J, s € Sj, and y € T;. Then S; € CO(X) is such that
Sj X {y} CR.
(2) Let W € CO(X) and yp € Y be such that
W C | J{U € CO(X) | U x {yo} C R}.

By (1), for some n > 0 there exist j1,...,j, € J such that

wel)s, and  ye (T =T
k=1 k=1

For any t € T,
W C Osjk gU{UeCO(X)‘Ux{t}gR}.
k=1

As T € O(Y), (2) follows.
(3) Assume

yeﬂ{Tj|j€JandyOETj}ﬁﬂ{Y\Tj|jeJandyo¢Tj}.

By (1),
U{ v ecox) | vnx {w) < R

equals

U{Sj\jGJandyo€Tj}:U{Sj|j€Jandy€Tj}
:U{UQECO(X)‘ng{y}gR}.

The next lemma is simple.
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Lemma 6.5. Let X be a Stone space. Then:
(1) O(X) is an algebraic lattice;
(2) CO(X) = rO(X).

After proving the next proposition, the author noted that the first part follows
from [12], Theorem II.4.10.

Proposition 6.6. Let X be a Stone space and Y a trivially ordered Priestley space.
Define a map
T:O(X xY) = O(X)¥

as follows: for al R€ O(X xY) andy €Y, let
[W(R)(y) == (H{U €COX) | U x {y} € R}.

Then W is an order-isomorphism. The restriction of ¥ to CO(X x YY) maps
onto CO(X)Y.

Proof. By Lemmas 1 and 3, every R € O(X X Y) equals |J (S; x Tj) for some
JjeJ
set Jand S; € CO(X), T; € CO(Y) (j € J). (It R CO(X xY), we may assume
J is finite, so that, by Lemma 4 (1) and (3), ¥(R) € CO(X)Y.) By Lemma 4 (2),
¥ is well-defined. It is clearly order-preserving.
Assume R, S € O(X xY) and U(R) < ¥(S). Assume (z,y) € R. Then there

exists U € CO(X) such that © € U and U x {y} C R. Hence
U C [W(R)(y) < [¥(9)](y)

Therefore there exists Uy € CO(X) such that x € Uy and Uy x {y} € S. Hence
(z,y) € S. Therefore R C S and ¥ is an order-embedding.

Now assume f € O(X)¥. Suppose U € CO(X), y € Y, and U C f(y). Then
there exists Ty, € CO(Y) such that y € Ty, and U C f(t) for all t € Ty,. [If
f € COX)Y let Ty = 7 (f()) ]

Let

R=) U UxTy,) ecoXxY).

YyEY UECO(X)
UCf(y)

[If f € CO(X)Y and Ty, = £ (f(y)) (U € CO(X), y € Y such that U C f(y)),

this set equals |J (f(y) x f1 (f(y))), which may be reduced to a finite union
yey
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since Im f is finite, so belongs to CO(X x Y).] By Lemma 4 (1), forall y € Y,

[¥(R)](y0) = (J{U € cOX) |U € f()
for some y € Y and yo € Ty }
which equals f(yo). Hence U(R) = f, so U is surjective. Therefore ¥ is an order-

isomorphism. .

Theorem 6.7. Let L € Lat, P € P. Then Con(L”) = (Con L)E.
Proof. As Comp L € DSlat, there exists a Stone space X such that
CO(X) = Comp L.
By Proposition 6, (Comp L)P = CO(X x P), where X x P is a Stone space by
Lemmas 1 and 3. By Theorem 5.10, [(Comp L)”]? = Con(L*). By Lemma 5,

CO(X x P)° 2 O(X x P). By Proposition 6, O(X x P) = O(X)E. By Lemma 5
again, O(X)E = [(Comp L)?])£ =2 (Con L)E. Hence Con(L¥) 22 (Con L)E. .
From Corollary 3.7, we get the following.

Corollary 6.8. Let L € Lat, M € D. Then
COD(LP(M)) = Slat <(Comp L7 v, 0Con L) y ((MB001)07 n, MBOOI)) .
Lemma 6.9. Let M € D. Then (Mpoo1)? = Con M.

Proof. Because P(Mgyo1) is trivially ordered, we have

(Mpoo))” L{(P(MBOOl)> ~ (’)(P(MBOOl)> ~ O(P(M)) ~ Con M.

Corollary 6.10. Let L € Lat, M € D. Then

Con(LP(M)) =~ Slat ((Comp L,V,0conr), (Con M, N, 1COnM)>.

The next corollary follows from Corollary 3.7.
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Corollary 6.11. Let L € Lat, M € D. Then
Con(LPM)) = (Con L)F(En M),

Corollary 6.12 ([9], Theorem 2.1). Let L be a lattice and P a finite poset with n
elements. Then Con(LY) 22 (Con L)™.

Proof. As P is a discrete space, (Con L)g = (ConL)P. The result follows from

Theorem 7.
| |

Corollary 6.13 ([26], Theorem). Let L be a finite lattice, M € D. Then
Con(LPM)) = (Con L)F(Con M),

Proof. As Comp L is finite,

Slat ((Comp L,V,0conr), (Con M,N, leon M))

= Slat™ ((Comp L,V,0conr), (Con M, N, 1ConM)>-

By Corollary 10, the left-hand side is isomorphic to Con(L"™)). By Corollary 3.7,

the right-hand side is isomorphic to (Con L)F(Con M), .

7. A counterexample

In this section we show that the answer to Schmidt’s question (§1) is in general
negative. As stated in §1, Grétzer and Schmidt have determined exactly when it
has a positive solution ([15], Theorem 3); our results were obtained independently.

Lemma 7.1. Let S be a chain with 0. Let T € D. Then

Slat((S,\/,Os), (T",m,T)) —{fe(T)% | f(0s) =T}

Proof. Let f € Slat((S,\/,OS),(T”,ﬂ,T)>. Assume s1, s5 € S and 81 < so.
Then f(s2) = f(s1V s2) = fgsl) N f(s2), so that f(s2) C f(s1).

Now assume f € (T9)%". Let s1, so € S. Without loss of generality s; < so.
Hence f(s1V s2) = f(s2). As f(s2) C f(s1), we have f(s1) N f(s2) = f(s2). Thus
f(s1Vs2) = f(s1) N f(s2).
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Corollary 7.2. Let C be a chain. Let S := 1@ (C?), T € D. Then:
(1) Stat((S,V,09), (T7,0,T)) = (T°);

2) smﬁ“((s,v,os), (T",m,T)) >~ (fe(T°)° | Tm [ finite}.
Lemma 7.3. The poset { f € [P(N)°|N | Im f finite} is not a complete lattice.

Proof. For all ng € N, define the map
frng: N — P(N)?

as follows. For all n € N,

a 0,{no} if n > no,
o) 1= { i@} 0 } if n < nz.

Then for all ng € N,
fno € P:={f € [P(N)’IN | Im f finite }.

For n € N,

(\/[P(N)”]N {fno | ng € N}) (n) = P({l, . 771})
Suppose for a contradiction that

g::vp{fno "I’L()EN}

exists. Then there exists kg € N such that kg < n implies g(ko) = g(n) (n € N).
For all n € N, P({1,...,n}) C g(n); if n > kg, then P({1,...,n}) C g(ko)-
Define h: N — P(N)? as follows: for all n € N,

 P({1,...,n}) ifn <k,
hin) := {g(ko) if ko < n.

Then h € P and for all ng € N,
fro < h.

Hence g < h; but g(ko) is infinite and h(ko) is finite, a contradiction.
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Proposition 7.4. There exist L € Lat and M € D such that

Con(LPMM)) 2 (Con L)F(Con M),

Proof. Let M := P(N). Note that 16 (N%) = Ii(].EB (N9)>. It is well-known that
there exists L € Lat such that Con L = 1@ (N?) (see, for example, [27], Theorem).
Hence Comp L 2 1 @ (N?).

By Lemma 6.9,

(Con L)P(ConM) =~ (Con [)PM7),
By Corollary 3.7,
(Con L)PM?) = glatfn ((Comp L.V, 0con1), (M7, 0, M))
~ Slatfi® ((1 @ (N9), v, o), (P(N)", ﬁ,P(N))).
By Corollary 2 (2) we have
(Con L)P(ConM) o ¢ r e [P(N)?N | Tm f finite },

which is not a complete lattice by Lemma 3, so cannot be isomorphic to a congru-

ence lattice.
[

References

[1] R. BaLses and P. DwINGER, Distributive Lattices, University of Missouri Press,
Columbia, Missouri, 1974.

[2] S. Burris and H. P. SANkAPPANAVAR, A Course in Universal Algebra, Springer-
Verlag, New York, 1981.

[3] R. Cierour, S. La Farce and A. PeTrovicH, Remarks on Priestley duality for
distributive lattices, Order, 8 (1991), 299-315.

[4] P. M. Conn, Universal Algebra, D. Reidel, Dordrecht, Holland, 1965.

[5] W. H. CornisH, Ordered topological spaces and the coproduct of bounded distri-
butive lattices, Colloquium Mathematicum, 36 (1976), 27-35.

[6] B. A. Davey, Free products of bounded distributive lattices, Algebra Universalis,
4 (1974), 106-107.

Acta Sci. Math. (Szeged),62:1—2(1996)
All rights reserved @ Bolyai Institute, University of Szeged



44

[7]
(8]
(9]
[10]
(11]
[12]

[13]
[14]

(15]
(16]
(17]
18]
(19]
20]
(21]
22]
23]
24]
(25]
[26]
27]

28]

J. D. FARLEY

B. A. Davey and H. A. PriestLEY, Introduction to Lattices and Order, Cambridge
University Press, Cambridge, 1990.

B. A. Davey and I. Rivar, Exponents of lattice-ordered algebras, Algebra Univer-
salis, 14 (1982), 87-98.

D. Durrus, B. Jénsson and 1. RivarL, Structure results for function lattices, Canad.
J. Math., 30 (1978), 392-400.

M. Erng, Compact generation in partially ordered sets, J. Austral. Math. Soc.,
42 (1987), 69-83.

E. Friep, On the behaviour of congruence-functors, Algebra Universalis, 24 (1987),
188-191.

G. Gierz, K. H. Hormann, K. Kemver, J. D. Lawson, M. MisLove and D. S. ScoTT,
A Compendium of Continuous Lattices, Springer-Verlag, Berlin, 1980.

G. GRATZER, General Lattice Theory, Academic Press, New York, 1978.

G. GrATzER and E. T. ScamipT, On the lattice of all join-endomorphisms of a
lattice, Proc. Amer. Math. Soc., 9 (1958), 722-726.

G. GrATzER and E. T. ScumipT, Congruence lattices of function lattices, Order,
11 (1994), 211-220.

J. D. Lawson, The versatile continuous order, Lecture Notes in Comput. Sci., 298
(1988), 134-160.

A. LEnkeHEGYI, On the fundamental theorem of lattice-primal algebras, Kobe J.
Math., 2 (1985), 103-115.

S. Mac LaANE, Categories for the Working Mathematician,  Springer-Verlag,
New York, 1988.

R. N. McKenzig, G. F. McNuLty and W. F. TavyLor, Algebras, Lattices, Varieties:
Volume I, Brooks/Cole Publishing Company, Monterey, California, 1987.

H. A. PriestLEY, Representation of distributive lattices by means of ordered Stone
spaces, Bull. London Math. Soc., 2 (1970), 186-190.

H. A. PriesTLEY, Ordered topological spaces and the representation of distributive
lattices, Proc. London Math. Soc., 24 (1972), 507-530.

H. A. PriesTrLEY, Ordered sets and duality for distributive lattices, Ann. Discrete
Math., 23 (1984), 39-60.

P. PubrLAk, On congruence lattices of lattices, Algebra Universalis, 20 (1985),
96-114.

R. W. QuackenBusH, Free products of bounded distributive lattices, Algebra Uni-
versalis, 2 (1972), 393-394.

R. W. QuackenBusH, Non-modular varieties of semimodular lattices with a span-
ning M3, Discrete Math., 53 (1985), 193-205.

E. T. Scumipt, Remark on generalized function lattices, Acta Math. Acad. Sci.
Hungar., 34 (1979), 337-339.

E. T. ScamipT, The ideal lattice of a distributive lattice with 0 is the congruence
lattice of a lattice, Acta Sci. Math. (Szeged), 43 (1981), 153-168.

T. P. SpeED, Profinite posets, Bull. Austral. Math. Soc., 6 (1972), 177-183.

Acta Sci. Math. (Szeged),62:1—2(1996)
All rights reserved @ Bolyai Institute, University of Szeged



Priestley powers of lattices and their congruences 45

[29] G. Wirke, Eine Charakterisierung der Dualrdume distributiver Supremums-
halbverbande, Arch. Math., 37 (1981), 359-363.

J. D. FarLEY, Mathematical Institute, University of Oxford, 24-29 St. Giles’, Oxford
OX1 3LB, United Kingdom; current affiliation: Mathematical Sciences Research Institute,
1000 Centennial Drive, Berkeley, CA 94720, USA; e-mail: farley@msri.org

Acta Sci. Math. (Szeged),62:1—2(1996)
All rights reserved @ Bolyai Institute, University of Szeged



