
Acta Sci. Math. (Szeged)

62 (1996), 3–45

Priestley powers of lattices and their congruences.

A problem of E. T. Schmidt

Jonathan David Farley
∗

For Professor E.T. Schmidt on his sixtieth birthday

Communicated by G. Czédli

Abstract. Let L be a lattice and M a bounded distributive lattice. Let

Con L denote the congruence lattice of L, P (M) the Priestley dual space of M ,

and L
P (M) the lattice of continuous order-preserving maps from P (M) to L

with the discrete topology. It is shown that Con(LP (M)) ∼= (Con L)
P (Con M)
Λ ,

the lattice of continuous order-preserving maps from P (Con M) to Con L with

the Lawson topology. Various other ways of expressing Con(LP ) as a lattice

of continuous functions or semilattice homomorphisms are presented. Indeed,

a link is established between semilattice homomorphisms from a semilattice

S into a bounded distributive lattice T (or its ideal lattice) and continuous

order-preserving maps from P (T ) into the ideal lattice of S with the Scott,

Lawson, or discrete topology. It is also shown that, in general, Con(LP (M)) 6∼=
(Con L)P (Con M), solving a problem of E. T. Schmidt (independently solved

by Grätzer and Schmidt).
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4 J. D. FARLEY

1. Introduction

A Priestley power of a (semi-) lattice L is a (semi-) lattice LP of continuous

order-preserving maps from a Priestley space P to L, where L has the discrete

topology (cf. [17], p. 105). (The maps are ordered pointwise.) Every Priestley

space arises as the poset of prime filters P (M) of a bounded distributive lattice

M , appropriately topologized. Hence Boolean powers ([2], Definition IV.5.3) are a

special case. If L and M belong to the category D of bounded distributive lattices,

then LP (M) is the coproduct of L and M in D ([5], Corollary 2.3; [6], Theorem and

Corollary; [24], Theorem).

In [26], the following problem is stated.

Problem. [26]. If L is a lattice and M a bounded distributive lattice, is the cong-

ruence lattice Con(LP (M)) ∼= (ConL)P (Con M)?

The problem has been solved in the affirmative for arbitrary L and finite M

([9], Theorem 2.1) as well as for finite L and arbitrary M ([26], Theorem). We

solve the problem completely by showing that

Con(LP (M)) ∼= (ConL)
P (Con M)
Λ ,

the lattice of continuous order-preserving maps from P (ConM) to ConL with the

Lawson topology Λ (Corollary 6.11). We present an example to show that, in

general,

Con(LP (M)) 6∼= (ConL)P (Con M),

(Proposition 7.4). Grätzer and Schmidt have proven that the isomorphism holds if

and only if either ConL is finite or M is finite ([15], Theorem 3). Our results were

proven independently.

Our approach is to use the results for finite exponents to get the corresponding

results for Priestley powers. By [28], Theorem, every Priestley space P is the inverse

limit of a filtered system of finite posets Q with the discrete topology. Hence every

Priestley power LP is the filtered limit of lattices LQ. Using an idea of [23], pp.

98–100, we can capture the congruence lattice of such a limit if we know Con(LQ)

for every LQ in the system. By [9], Theorem 2.1, we do. (This approach was also

taken in [15], §4, but certain non-trivial steps were passed over without proof.)

We represent various types of posets of continuous order-preserving maps as

posets of semilattice homomorphisms (Theorem 3.6, Corollaries 3.7 and 3.8). For

example, if S is a semilattice with least element 0 and T ∈ D, then

Slat(S, T ) ∼= (Sσ∂
Λ )P (T ),
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Priestley powers of lattices and their congruences 5

where Sσ is the ideal lattice of S and Sσ∂ this lattice ordered by reverse inclusion.

These representations enable us to provide several alternative representations

of Con(LP ). For example,

Comp(LP ) ∼= (Comp L)P

where L is a lattice, P a Priestley space, P the same space with the trivial order,

and CompL the semilattice of compact congruences of L (Theorem 5.10). Also

Con(LP ) ∼= (ConL)P
Σ ,

the lattice of continuous maps from P to ConL where the latter has the Scott

topology Σ (Theorem 6.7). Alternatively, if M ∈ D, then

Con(LP (M)) ∼= Slat

(

(Comp L,∨, 0Con L), (MBool
σ,∩, MBool)

)

,

the lattice of semilattice homomorphisms from the {0}-∨-semilattice Comp L to

the {1}-∩-semilattice MBool
σ, where MBool is the minimal Boolean extension of M

(Corollary 6.8). Also

Con(LP (M)) ∼= Slat

(

(Comp L,∨, 0Con L), (ConM, ∩, 1Con M )
)

(Corollary 6.10). These representations enable us to relate special cases of our

results to those of [3] and [14] on semilattice homomorphisms between distributive

lattices. In particular, we prove that Slat(L, L) is self-dual for a finite distributive

lattice L (Corollary 3.9). Finally, our representations let us construct the example

which yields a negative solution to the problem.

2. Notation, definitions, and basic theory

Let us introduce notation and remind ourselves of some definitions and basic

results. (See [7], [16], inter alia.) If a poset P has a least element, we denote it 0P

or 0; if it has a greatest element, we denote it 1P or 1. A poset with 0 and 1 is

bounded.

Denote the ordinal sum of posets P and Q by P ⊕ Q. Let P(X) denote the

power set of the set X. Let 1 denote the one-one element poset.

Let P be a poset and Q and S subsets. Then ↑Q S denotes

{ p ∈ Q | s ≤ p for some s ∈ S }
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6 J. D. FARLEY

and ↓Q S denotes

{ p ∈ Q | s ≥ p for some s ∈ S }.

We also write ↑S for ↑P S and ↓S for ↓P S. For s ∈ P , we use ↑ s and ↓ s for ↑ {s}

and ↓ {s}, respectively. If S = ↑ S, it is an up-set; if S = ↓ S, it is a down-set. A

non-empty subset D of P is directed if every finite subset of D has an upper bound

in D. If D has a join it is denoted
⊔

D. (The special notation, which is standard,

serves as a convenient reminder that the set under consideration is directed.) An

ideal is a directed down-set; the set of all such, ordered by inclusion, is denoted

Pσ. A filtered subset of P is a directed subset of the poset P ∂ whose order is dual

to that of P . A filter is an ideal of P ∂ . The poset of filters of P is denoted Pπ.

An element k of a poset P is compact if, for all directed subsets D of P such

that
⊔

D exists and p ≤
⊔

D, there exists d ∈ D such that k ≤ d. The poset of

compact elements is denoted κ(P ). If P is a complete lattice, an element k ∈ P is

compact if and only if, for all S ⊆ P such that k ≤
∨

S, there exists a finite subset

T ⊆ S such that k ≤
∨

T ([7], Lemma 3.22). An algebraic lattice is a complete

lattice such that every element is a join of compact elements.

The class of semilattices with neutral element is denoted Slat. [The neutral

element is 0 for ∨-semilattices and 1 for ∧-semilattices ([4], p. 50).] If S and

T ∈ Slat, then Slat(S, T ) denotes the poset of Slat-morphisms from S to T ordered

pointwise, i.e., for f , g ∈ Slat(S, T ), f ≤ g if f(s) ≤ g(s) for all s ∈ S. The subset

of Slat-morphisms f whose images Im f are finite is denoted Slat
fin(S, T ). Let Lat

be the class of lattices. We regard Slat and Lat as categories with the appropriate

morphisms.

A ∨-semilattice S with 0 is distributive if, whenever a, x, y ∈ S and

a ≤ x ∨ y,

there exist b, c ∈ S such that b ≤ x, c ≤ y, and a = b ∨ c. Equivalently, Sσ is a

distributive lattice. We shall use Stone duality for the class DSlat of distributive

∨-semilattices with 0 ([13], II.5).

A proper ideal I of S ∈ DSlat is prime if, whenever a, b ∈ S and c ≤ a, b

implies c ∈ I for all c ∈ S, then a ∈ I or b ∈ I. For all a ∈ S, let

â := { I ∈ Sσ | I prime, a /∈ I }.

Let S(S) be the set of prime ideals of S with the topology generated by the basis

{ â | a ∈ S }. Then S(S) is the Stone space of S.

Given a topological space X, let O(X) denote the bounded distributive lattice

of open sets and CO(X) the ∪-semilattice with least element ∅ of compact open
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Priestley powers of lattices and their congruences 7

sets. A topological space is sober if every non-empty ∪-prime (i.e., ∪-irreducible)

closed set is the closure of a point. Stone spaces may be abstractly characterized

as sober T0 spaces X such that CO(X) is a basis. See [29], Lemma 1, Lemma 3,

and Satz 4. Indeed, if S ∈ DSlat, then CO
(

S(S)
)

= { â | a ∈ S }. The map a 7→ â

(a ∈ S) is an isomorphism from S onto CO
(

S(S)
)

([29], pp. 360–361).

Given L ∈ Lat, let ConL denote the lattice of congruences of L. It is well-

known that ConL is a distributive algebraic lattice ([1], Theorem II.9.15). For

X ⊆ L × L, let

ϑL(X) :=
⋂

{θ ∈ ConL | X ⊆ θ }.

Let Comp L := κ(ConL). It is well-known that

Comp L =

{ n
∨

i=1

ϑL(ai, bi)
∣

∣

∣
n ≥ 0, ai, bi ∈ L (i = 1,. . . ,n)

}

.

If M ∈ Lat and f :L → M is a homomorphism, let

Comp(f): Comp(L) → Comp(M)

denote the function ([23], p. 98)

[Comp(f)](θ) := ϑM
(

(f × f)[θ]
)

(θ ∈ Comp L).

If A is an algebraic lattice, then
(

κ(A),∨, 0A

)

∈ Slat and
(

κ(A)
)σ

∼= A

via the map I 7→
⊔

I (I ∈ κ(A)σ) with inverse a 7→ ↓κ(A) a (a ∈ A). Further, if

(S, ∨, 0S) ∈ Slat, then Sσ is an algebraic lattice and κ(Sσ) = { ↓ s | s ∈ S }, which

is isomorphic to S. (See [10], Corollary 2.) Similarly, if S is a bounded lattice then

κ(Sπ) = { ↑ s | s ∈ S }.

If A is an algebraic lattice, the Scott topology is the topology

Σ := { U ⊆ A | U = ↑U and for all directed D ⊆ A,
⊔

D ∈ U =⇒ D ∩ U 6= ∅ }.

The Lawson topology is the topology Λ on A generated by the subbasis

Σ ∪ {A\ ↑ a | a ∈ A }.

(See [12], pp. 99, 144.)
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8 J. D. FARLEY

If P and Q are ordered spaces and Q has topology τ , QP
τ is the poset of

continuous order-preserving maps from P to Q ordered pointwise; QP is QP
τ where

τ is the discrete topology.

An ordered space P is totally order-disconnected if, for all p, q ∈ P such that

p 6≤ q, there exists a clopen up-set U ⊆ P such that p ∈ U , q /∈ U . A Priestley space

is a compact totally order-disconnected ordered space. Let P denote the category

of Priestley spaces with continuous order-preserving maps. Let P
fin denote the full

subcategory of finite Priestley spaces. By the proofs of [12], Theorems III.1.9 and

III.1.10, an algebraic lattice with the Lawson topology is a Priestley space.

If P is an ordered space, let D(P ) denote the set of clopen up-sets of P ; let

U(P ) denote the set of open up-sets.

Let D denote the category of bounded distributive lattices with {0, 1}-

homomorphisms (homomorphisms preserving 0 and 1). For L ∈ D, let P (L)

denote the Priestley space of prime filters of L, appropriately topologized. Let

J (L) denote the poset of join-irreducible elements of L. For a ∈ L, let

ρL(a) := { F ∈ P (L) | a ∈ F }.

It is well-known that D and P are dually equivalent categories, D(−) and P (−)

being the functors yielding the dual equivalence. We shall identify a lattice with

the clopen up-sets of its Priestley dual space and shall not differentiate between

the abstract and concrete forms of the lattice. For the details of Priestley duality,

see [20], [21].

If L ∈ D, there is an isomorphism from Lσ to U
(

P (L)
)

. Refer to [22], §8;

see also [7], 10.24.

If P ∈ P, let P denote the trivially ordered Priestley space with the same

topology as P . We denote the minimal Boolean extension of L ∈ D by LBool. See

[1], Definition V.4.5, [21], §6.

If L ∈ D, then ConL is dually isomorphic to the lattice of closed subsets of

P (L) ([7], 10.27).

Let P be a set, Π, Π0 partitions of P . Let νΠ:P → Π be the map assigning

each element of P its equivalence class. The set of partitions of P is ordered as

follows: Π ≤ Π0 if every equivalence class of Π is contained in some equivalence

class of Π0. If Π ≤ Π0, let

νΠ,Π0
: Π → Π0

be the map assigning each equivalence class of Π the unique equivalence class of

Π0 containing it.

Given a partition Π := {Vi}i∈I of a poset P into equivalence classes indexed

by a set I, we define a quasiorder ≤Π on Π as follows. Let ≤Π be the transitive
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Priestley powers of lattices and their congruences 9

closure of the relation �Π defined in this way: Vi �Π Vj if p ≤ q for some p ∈ Vi,

q ∈ Vj (i, j ∈ I).

If P ∈ P, denote by EP the ordered set of partitions Π of P into open equi-

valence classes such that (Π,≤Π) is partially ordered. Regard Π as a space with

the discrete topology. The same partition Π with the antichain ordering is denoted

Π. Let EP := { Π | Π ∈ EP }.

Let P ∈ P, M ∈ Lat ∪ Slat. For every Π ∈ EP , let µM
Π :MΠ → MP be

defined by µM
Π (f) := f ◦ νΠ (f ∈ MΠ).

For Π, Π0 ∈ EP such that Π ≤ Π0, let

µM
Π,Π0

:MΠ0 → MΠ

be defined by

µM
Π,Π0

(f) := f ◦ νΠ,Π0 (f ∈ MΠ0).

For L ∈ Lat, P ∈ P
fin, and p ∈ P , denote by χp the kernel of the p-th

projection of LP onto L. Define

Γ′
P : Con(LP ) → (ConL)P

as follows: for θ ∈ Con(LP ) and p ∈ P , let

[Γ′
P (θ)](p) := { (a, b) ∈ L × L | (f, g) ∈ θ ∨ χp for all f , g ∈ LP

such that f(p) = a, g(p) = b }.

Define

ΓP : Comp(LP ) → (Comp L)P

by ΓP (θ) := Γ′
P (θ) for all θ ∈ Comp(LP ). Define

∆′
P : (ConL)P → Con(LP )

as follows: for F ∈ (ConL)P , let

∆′
P (F ) := { (f, g) ∈ LP × LP |

(

f(p), g(p)
)

∈ F (p) for all p ∈ P }.

Define

∆P : (CompL)P → Comp(LP )

by ∆P (F ) := ∆′
P (F ) for all F ∈ (Comp L)P . (That the above functions are well

defined will be shown in Proposition 5.7.)
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10 J. D. FARLEY

If L ∈ Lat and P ∈ P
fin, a, b ∈ L, and p0 ∈ P , define mP (a, b, p0):P → L for

all p ∈ P as follows:

[mP (a, b, p0)](p) :=

{

a if p = p0,

a ∨ b if p > p0,

a ∧ b else.

Finally, we remind ourselves of basic categorical notions. Let C be a category

and F a filtered poset. Let (Ci)i∈F be a family of objects of C and

(fij :Cj → Ci) i,j∈F

i≤j

a family of morphisms with the following properties:

(1) fii = id(Ci) for all i ∈ F ;

(2) fij ◦ fjk = fik for all i, j, k ∈ F such that i ≤ j ≤ k.

Then

S :=
(

(Ci)i∈F , (fij :Cj → Ci) i,j∈F

i≤j

)

is a filtered system in C. Assume C ∈ C and (fi:Ci → C)i∈F is a family of

morphisms such that i ≤ j implies fi ◦ fij = fj (i, j ∈ F ). Then

(

C, (fi:Ci → C)i∈F

)

is compatible with the filtered system S. Assume
(

C, (fi:Ci → C)i∈F

)

also has the

property that, for any
(

C ′, (f ′
i :Ci → C ′)i∈F

)

compatible with S, there is a unique

morphism f :C → C ′ such that f ◦fi = f ′
i for all i ∈ F . Then

(

C, (fi:Ci → C)i∈F

)

is a filtered limit of S.

Let (Di)i∈F be a family of objects of C and

(gij :Di → Dj) i,j∈F

i≤j

a family of morphisms with the following properties:

(1) gii = id(Di) for all i ∈ F ;

(2) gjk ◦ gij = gik for all i, j, k ∈ F such that i ≤ j ≤ k.

Then

T :=
(

(Di)i∈F , (gij :Di → Dj) i,j∈F

i≤j

)

is an inverse system in C. Assume D ∈ C and (gi:D → Di)i∈F is a family of

morphisms such that i ≤ j implies gij ◦ gi = gj (i, j ∈ F ). Then

(

D, (gi:D → Di)i∈F

)
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Priestley powers of lattices and their congruences 11

is compatible with the inverse system T . Assume
(

D, (gi:D → Di)i∈F

)

also has the

property that, for any
(

D′, (g′
i:D

′ → Di)i∈F

)

compatible with T , there is a unique

morphism g:D′ → D such that gi◦g = g′
i for all i ∈ F . Then

(

D, (gi:D → Di)i∈F

)

is an inverse limit of T .

A result will be referred to without a section number in the section in which

it appears.

3. Continuous function duals of semilattice homomorphisms

In this section we show how various posets of Slat-morphisms may be vie-

wed as posets of continuous order-preserving maps from a Priestley space into an

ideal lattice with an appropriate topology (Theorem 6, Corollary 7, and Corollary

8). We then show how Priestley relations, introduced in [3] as the duals of {0}-

∨-homomorphisms between bounded distributive lattices under Priestley duality,

correspond naturally with such function spaces (Proposition 12).

Lemma 3.1. Let A be an algebraic lattice. The family { ↑ k | k ∈ κ(A) } is closed

under finite (including empty) intersections and is a basis for Σ.

Hence { ↑ k | k ∈ κ(A) } ∪ {A\ ↑ a | a ∈ A } is a subbasis for Λ.

Proof. See [12], Corollary II.1.15.

Lemma 3.2. Let A be an algebraic lattice and let P ∈ P and p ∈ P . Let

g ∈ Slat

(

(

κ(A),∨, 0A

)

,
(

U(P ),∩, P
)

)

.

Then { k ∈ κ(A) | p ∈ g(k) } ∈ κ(A)σ. Hence for all k0 ∈ κ(A),

k0 ≤
⊔

{ k ∈ κ(A) | p ∈ g(k) } ⇐⇒ p ∈ g(k0).

Proof. Let I := { k ∈ κ(A) | p ∈ g(k) }. As g(0A) = P , we have 0A ∈ I.

If k0 ∈ κ(A), k ∈ I, and k0 ≤ k, then p ∈ g(k) ⊆ g(k0), so k0 ∈ I.

If k0, k1 ∈ I, then p ∈ g(k0) ∩ g(k1) = g(k0 ∨ k1), so k0 ∨ k1 ∈ I. Therefore

I ∈ κ(A)σ.

By the isomorphism between κ(A)σ and A of §2, for all k ∈ κ(A), k ≤
⊔

I if

and only if k ∈ I.
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12 J. D. FARLEY

Lemma 3.3. Let A be an algebraic lattice and let P ∈ P. Let f :P → A be a map.

Assume

{ f−1(↑ k) | k ∈ κ(A) }

is finite. Then for all a ∈ A, there exists k ∈↓κ(A) a such that

f−1(↑ a) = f−1(↑ k).

Proof. Let a ∈ A. Let k0 ∈ ↓κ(A) a be such that f−1(↑ k0) is minimal in

{ f−1(↑ k) | k ∈ ↓κ(A) a }.

Then for all k ∈ κ(A) such that k0 ≤ k ≤ a, we have f−1(↑ k) = f−1(↑ k0).

Therefore

f−1(↑ a) = f−1

(

⋂

k∈κ(A)∩↓a

↑ k

)

=
⋂

k∈κ(A)∩↓a

f−1(↑ k)

=
⋂

k∈κ(A)
k0≤k≤a

f−1(↑ k) = f−1(↑ k0).

Lemma 3.4. Let A be an algebraic lattice and let P ∈ P. Let f ∈ AP
Σ . The

following are equivalent:

(1) f ∈ AP
Λ ;

(2) for all k ∈ κ(A), f−1(↑ k) is closed.

In either case, for all k ∈ κ(A), f−1(↑ k) ∈ D(P ).

Proof. See [16], §V.

Lemma 3.5. Let A be an algebraic lattice and let P ∈ P. Let f ∈ AP
Λ . The

following are equivalent:

(1) f ∈ AP ;

(2) Im f is finite;

(3) { f−1(↑ k) | k ∈ κ(A) } is finite.
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Proof. (1)=⇒(2). The implication holds because P is compact and f is a conti-

nuous map into a space with the discrete topology, so Im f is compact and hence

finite.

(2)=⇒(3). For all k ∈ κ(A),

f−1(↑ k) =
⋃

{ f−1(a) | a ∈ Im f and k ≤ a }

so there are at most 2n elements in { f−1(↑ k) | k ∈ κ(A) } where n is the size of

Im f .

(3)=⇒(1). By Lemmas 3 and 4, { f−1(↑ a) | a ∈ A } is finite and f−1(↑ a) is

clopen for all a ∈ A. Let a ∈ A. Then

{ f−1(↑ b) | b ∈ A and a < b } = { f−1(↑ bi) | i = 1, . . . , n }

for some n ≥ 0, bi ∈ A such that a < bi (i = 1,. . . , n). Then

f−1(a) = f−1(↑ a) \

(

⋃

{

f−1(↑ b)
∣

∣

∣
b ∈ A where a < b

}

)

= f−1(↑ a) \

( n
⋃

i=1

f−1(↑ bi)

)

,

which is open. Hence f ∈ AP .

Theorem 3.6. Let A be an algebraic lattice and let P ∈ P. By κ(A) and U(P ) we

shall mean the objects
(

κ(A),∨, 0A

)

and
(

U(P ),∩, P
)

of Slat. Define a map

Ψ:AP
Σ → Slat

(

κ(A),U(P )
)

as follows: for f ∈ AP
Σ and k ∈ κ(A), let

[Ψ(f)](k) := f−1(↑ k).

Define a map

Φ:Slat

(

κ(A),U(P )
)

→ AP
Σ

as follows: for g ∈ Slat

(

κ(A),U(P )
)

and p ∈ P , let

[Φ(g)](p) :=
⊔

{ k ∈ κ(A) | p ∈ g(k) }.

Then Ψ and Φ are mutually-inverse order-isomorphisms. The restriction of Ψ

to AP
Λ maps onto Slat

(

κ(A), D(P )
)

. The restriction of Ψ to AP maps onto

Slat
fin
(

κ(A), D(P )
)

.
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14 J. D. FARLEY

Proof. Let f ∈ AP
Σ , k, k1, k2 ∈ κ(A). As f is continuous and order-preserving,

by Lemma 1 f−1(↑ k) ∈ U(P ). Also f−1(↑ 0A) = f−1(A) = P .

Finally f−1
(

↑ (k1 ∨ k2)
)

= f−1
(

(↑ k1) ∩ (↑ k2)
)

= f−1(↑ k1) ∩ f−1(↑ k2). So

the map k 7→ f−1(↑ k) [k ∈ κ(A)] is in Slat

(

κ(A),U(P )
)

. Thus Ψ is well-defined.

Let f1, f2 ∈ AP
Σ be such that f1 ≤ f2. For k ∈ κ(A),

[Ψ(f1)](k) = f−1
1 (↑ k) = { p ∈ P | k ≤ f1(p) }

⊆ { p ∈ P | k ≤ f2(p) } = f−1
2 (↑ k) = [Ψ(f2)](k).

Hence Ψ(f1) ≤ Ψ(f2), so Ψ is order-preserving.

Let g ∈ Slat

(

κ(A),U(P )
)

and p0 ∈ P . By Lemma 2,

{ k ∈ κ(A) | p0 ∈ g(k) }

is directed. Let k0 ∈ κ(A) be such that
⊔

{ k ∈ κ(A) | p0 ∈ g(k) } ∈↑ k0. By

Lemma 2, p0 ∈ g(k0). As g(k0) is open, we conclude that the map

p 7→
⊔

{ k ∈ κ(A) | p ∈ g(k) } (p ∈ P )

is continuous from P to A with the Scott topology, by Lemma 1.

Let p1, p2 ∈ P be such that p1 ≤ p2. Let k0 ∈ κ(A) be such that p1 ∈ g(k0).

Then p2 ∈ g(k0), because g(k0) is an up-set. Therefore

⊔

{ k ∈ κ(A) | p1 ∈ g(k) } ≤
⊔

{ k ∈ κ(A) | p2 ∈ g(k) }.

We conclude that the map p 7→
⊔

{ k ∈ κ(A) | p ∈ g(k) } is order-preserving.

Therefore Φ is well-defined.

Let g1, g2 ∈ Slat

(

κ(A),U(P )
)

be such that g1 ≤ g2 and let p ∈ P . For

k ∈ κ(A), p ∈ g1(k) implies p ∈ g2(k), so

[Φ(g1)](p) =
⊔

{ k ∈ κ(A) | p ∈ g1(k) }

≤
⊔

{ k ∈ κ(A) | p ∈ g2(k) } = [Φ(g2)](p).

Hence Φ(g1) ≤ Φ(g2), so Φ is order-preserving.

Let f ∈ AP
Σ . For p0 ∈ P ,

[(Φ ◦ Ψ)(f)](p0) =
⊔

{ k ∈ κ(A) | p0 ∈ [Ψ(f)](k) }

=
⊔

{ k ∈ κ(A) | p0 ∈ f−1(↑ k) }

=
⊔

{k ∈ κ(A) | k ≤ f(p0) } = f(p0),
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Priestley powers of lattices and their congruences 15

so (Φ ◦ Ψ)(f) = f . That is, Φ ◦ Ψ = id(AP
Σ).

Now let g ∈ Slat

(

κ(A),U(P )
)

. For k0 ∈ κ(A),

[(Ψ ◦ Φ)(g)](k0) = [Φ(g)]−1(↑ k0) = { p ∈ P | k0 ≤ [Φ(g)](p) }

=
{

p ∈ P
∣

∣

∣
k0 ≤

⊔

{ k ∈ κ(A) | p ∈ g(k) }
}

.

By Lemma 2, we have

[(Ψ ◦ Φ)(g)](k0) = { p ∈ P | p ∈ g(k0) } = g(k0),

so (Ψ ◦ Φ)(g) = g. That is, Ψ ◦ Φ = id
[

Slat

(

κ(A),U(P )
)]

. Therefore, Ψ and Φ

are mutually-inverse order-isomorphisms.

Let f ∈ AP
Σ . By Lemma 4, f ∈ AP

Λ if and only if

Ψ(f) ∈ Slat

(

κ(A), D(P )
)

.

By Lemma 5, f ∈ AP if and only if Im Ψ(f) is finite and

Ψ(f) ∈ Slat

(

κ(A), D(P )
)

.

The next corollary follows from Theorem 6 using the D-P dictionary for

ideals mentioned in §2. It explains the “curious duality” behind the representation

of modular lattices of the form MP
3 , where M3 is the five-element non-distributive

modular lattice and P a finite poset ([25], §1, Construction 1).

Corollary 3.7. Let (S, ∨, 0S) ∈ Slat, T ∈ D. We regard T and T σ as the ob-

jects (T, ∧, 1T ) and (T σ,∩, T ) of Slat, respectively. Let ϕ:κ(T σ) ∼= T be the iso-

morphism ϕ(↓ t) = t (t ∈ T ). Define a map

Ψ: (Sσ
Σ)P (T ) → Slat(S, T σ)

as follows: for f ∈ (Sσ
Σ)P (T ) and s ∈ S, let

[Ψ(f)](s) := { t ∈ T | s ∈
⋂

f [ρT (t)] }.

Define a map

Φ:Slat(S, T σ) → (Sσ
Σ)P (T )
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16 J. D. FARLEY

as follows: for g ∈ Slat(S, T σ) and F ∈ P (T ), let

[Φ(g)](F ) := { s ∈ S | F ∩ g(s) 6= ∅ }.

Then Ψ and Φ are mutually-inverse order-isomorphisms.

Define Ψ′: (Sσ
Λ)P (T ) → Slat(S, T ) as follows: for f ∈ (Sσ

Λ)P (T ) and s ∈ S, let

[Ψ′(f)](s) := ϕ
[(

Ψ(f)
)

(s)
]

.

Define Φ′:Slat(S, T ) → (Sσ
Λ)P (T ) as follows: for g ∈ Slat(S, T ) and F ∈ P (T ), let

[Φ′(g)](F ) := g−1(F ).

Then Ψ′ and Φ′ are mutually-inverse order-isomorphisms. The restriction of Ψ′ to

(Sσ)P (T ) maps onto Slat
fin(S, T ).

By reversing the order of T , we get the following.

Corollary 3.8. Let (S, ∨, 0S) ∈ Slat, T ∈ D. We regard T as the object (T, ∨, 0T )

of Slat. Let ϕ:κ(Tπ) → T be the dual-isomorphism ϕ(↑ t) = t.

Define the map Ψ′: (Sσ∂
Λ )P (T ) → Slat(S, T ) as follows: for f ∈ (Sσ∂

Λ )P (T ) and

s ∈ S, let

[Ψ′(f)](s) := ϕ
(

{ t ∈ T | s ∈
⋂

f [P (T ) \ ρT (t)] }
)

.

Define a map

Φ′:Slat(S, T ) → (Sσ∂
Λ )P (T )

as follows: for g ∈ Slat(S, T ) and F ∈ P (T ), let

[Φ′(g)](F ) := g−1(T \ F ).

Then Ψ′ and Φ′ are mutually-inverse order-isomorphisms. The restriction of Ψ′ to

(Sσ∂)P (T ) maps onto Slat
fin(S, T ).

It has been shown that if L is a finite lattice, then Slat(L, L) ∈ D if and only

if L ∈ D (see [14], Theorem 3). Indeed, if L ∈ D and L is finite, [14], Lemma 1

states that LJ (L) ∼= Slat(L, L). We also have the following
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Priestley powers of lattices and their congruences 17

Corollary 3.9. Let L ∈ D be finite. Then

LJ (L) ∼=
(

Slat(L, L)
)∂

.

Therefore Slat(L, L) is self-dual.

Proof. As L is finite, Lσ ∼= L and P (L) = { ↑ j | j ∈ J (L) } ∼= J (L)∂ .

Indeed, Slat(L, L) is the coproduct of L and L∂ in D for a finite distributive

lattice L. (See [5], Corollary 2.3; [6], Theorem and Corollary; and [24], Theorem.)

Under Priestley duality, continuous order-preserving maps between Priestley

spaces P and Q correspond to {0, 1}-preserving homomorphisms between D(Q)

and D(P ). In [3], {0}-∨-homomorphisms were shown to correspond to certain

relations between P and Q.

Let P , Q ∈ P; let R ⊆ P × Q. For p ∈ P , R(p) := { q ∈ Q | (p, q) ∈ R }. For

V ⊆ Q, R−1(V ) := { p ∈ P | R(p) ∩ V 6= ∅ }. The relation R is a Priestley relation

if

(1) R(p) is a closed down-set of Q for all p ∈ P ;

(2) R−1(V ) ∈ D(P ) for all V ∈ D(Q).

Let R(P, Q) denote the set of Priestley relations from P to Q.

For R ∈ R(P, Q), let R∗:D(Q) → D(P ) be the function R∗(V ) = R−1(V )
(

V ∈ D(Q)
)

. By [3], Lemma 1.5, it is a {0}-∨-homomorphism. Indeed, the map

R 7→ R∗ [R ∈ R(P, Q)]

is a bijection between R(P, Q) and Slat

(

D(Q), D(P )
)

(where we regard D(P ) and

D(Q) as {∅}-∪-semilattices).

We shall turn R(P, Q) into a poset as follows: for R, S ∈ R(P, Q), R ≤ S if

and only if R(p) ⊆ S(p) for all p ∈ P .

Lemma 3.10. Let P , Q ∈ P, R ∈ R(P, Q). Then for all p ∈ P ,

Q \ R(p) =
⋃

{ V ∈ D(Q) | p /∈ R∗(V ) }.

Proof. For all p ∈ P , the set Q \ R(p) ∈ U(Q). By the isomorphism of §2,

Q \ R(p) =
⋃

{ V ∈ D(Q) | V ⊆ Q \ R(p) }

=
⋃

{ V ∈ D(Q) | R(p) ⊆ Q \ V }

=
⋃

{ V ∈ D(Q) | p /∈ R−1(V ) }.
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18 J. D. FARLEY

Lemma 3.11. Let P , Q ∈ P. The map

R 7→ R∗ [R ∈ R(P, Q)]

from R(P, Q) to Slat

[(

D(Q),∪, ∅
)

,
(

D(P ),∪, ∅
)]

is an order-isomorphism.

Proof. Let R, S ∈ R(P, Q). First assume R ⊆ S. Then for all V ∈ D(Q)

R∗(V ) = R−1(V ) = { p ∈ P | R(p) ∩ V 6= ∅ }

⊆ { p ∈ P | S(p) ∩ V 6= ∅ } = S−1(V ) = S∗(V ).

Therefore R∗ ≤ S∗. Hence the map is order-preserving.

Now assume R∗ ≤ S∗. By Lemma 10, for all p ∈ P ,

Q \ S(p) =
⋃

{ V ∈ D(Q) | p /∈ S∗(V ) }

⊆
⋃

{ V ∈ D(Q) | p /∈ R∗(V ) } = Q \ R(p),

so that R(p) ⊆ S(p). Therefore R ⊆ S. Hence the map is an order-embedding.

As the map is onto, it is an order-isomorphism.

Now we establish the connection between our function space representation

of Slat-morphisms and Priestley relations.

Proposition 3.12. Let P , Q ∈ P. We regard D(P ) and D(Q) as {∅}-∪-

semilattices. Define

θ:R(P, Q) → U(Q)P ∂

Λ

as follows: for R ∈ R(P, Q) and p ∈ P , let

[θ(R)](p) := Q \ R(p).

Define

Ψ′:U(Q)P ∂

Λ → Slat

(

D(Q), D(P )
)

as follows:

[Ψ′(f)](V ) := P \ f−1(↑U(Q) V ) [f ∈ U(Q)P ∂

Λ , V ∈ D(Q)].

Define

Φ′:Slat

(

D(Q), D(P )
)

→ U(Q)P ∂

Λ
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as follows: for g ∈ Slat

(

D(Q), D(P )
)

and p ∈ P , let

[Φ′(g)](p) :=
⋃

{ V ∈ D(Q) | p /∈ g(V ) }.

Then:

(1) θ is a dual-isomorphism;

(2) Ψ′ and Φ′ are mutually-inverse dual-isomorphisms;

(3) for all R ∈ R(P, Q),

(Ψ′ ◦ θ)(R) = R∗.

Proof. By Theorem 6, Ψ′ and Φ′ are inverse dual-isomorphisms.

For R ∈ R(P, Q) and p ∈ P ,

[Φ′(R∗)](p) =
⋃

{ V ∈ D(Q) | p /∈ R∗(V ) } = Q \ R(p)

by Lemma 10. Hence θ is well-defined and Φ′(R∗) = θ(R), so

(Ψ′ ◦ θ)(R) = R∗.

4. Profinite posets and Priestley powers

In [28], Theorem, it is shown that every Priestley space P is an inverse limit

of finite posets with the discrete topology. Although the proof requires minor

modifications, the basic idea is to partition the space into finitely many parts and

place a partial order on the set of equivalence classes (if possible) so that the natural

projection map is continuous and order-preserving. The inverse limit of the filtered

system of these ordered partitions will be the original Priestley space (Proposition

6). If one does this same procedure with P , a priori one will get more partitions.

We show, however, that P is in fact the inverse limit of the unordered versions of

the partitions arising from P (Proposition 7).

If M ∈ Lat ∪ Slat, then, for each of the above partitions Π of P , one gets

a Priestley power MΠ, and the filtered limit of these is MP (Proposition 14).

For P , however, we are not using all the partitions that arise from P necessarily,

but only those arising from P . While the inverse limit of each filtered system of

partitions (the one arising from P , the other from P ) is P , we must prove that the

corresponding filtered limit is MP (Proposition 15). We use a lemma, interesting

in its own right, to show that if a Priestley space is an inverse limit of two filtered

systems of finite antichains, then any partition arising from one system may be

refined to yield a partition arising from the other system (Lemma 9).

The first lemmas are easy.
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20 J. D. FARLEY

Lemma 4.1. Let P be a set, Π, Π0 partitions of P such that Π ≤ Π0. Then

νΠ0
= νΠ,Π0 ◦ νΠ.

Lemma 4.2. Let P ∈ P. Then:

(1) every Π ∈ EP is a finite poset, the elements of which are non-empty clopen

subsets of P ;

(2) for all Π ∈ EP , νΠ:P → Π is continuous, order-preserving, and surjective;

(3) for all Π, Π0 ∈ EP such that Π ≤ Π0,

νΠ,Π0 : Π → Π0

is order-preserving and surjective;

(4) EP ⊆ E
P

.

Lemma 4.3. Let P ∈ P; let Q be a poset. Let f ∈ QP . For each q ∈ Im f , let

Vq := f−1(q); let Π := {Vq}q∈Im f . Define g: Π → Q by g(Vq) := q for all q ∈ Im f .

Then Π ∈ EP , g is order-preserving, and f = g ◦ νΠ.

Proof. Clearly Π is a partition of P into open subsets. We now prove that the

quasiorder ≤Π is antisymmetric. Let q, r ∈ Im f . Assume that Vq ≤Π Vr. Then

for some n ≥ 1, there exist q1,. . . ,qn ∈ Im f such that

Vq = Vq1 �Π . . . �Π Vqn
= Vr.

As f is order-preserving,

q = q1 ≤ . . . ≤ qn = r,

so q ≤ r. Thus, if q, r ∈ Im f , Vq ≤Π Vr, and Vr ≤Π Vq, then q = r and hence

Vq = Vr. Therefore ≤Π is antisymmetric. We conclude that Π ∈ EP .

The above shows that g is order-preserving and clearly f = g ◦ νΠ.

Proposition 4.4. Let P ∈ P. The poset EP is filtered.
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Proof. If P = ∅, the partition with no equivalence classes is in EP . If P 6= ∅, the

partition {P} ∈ EP . In either case, EP 6= ∅.

Now let Π1, Π2 ∈ EP . By Lemma 2 (2),

νi := νΠi
:P → Πi (i = 1, 2)

is continuous and order-preserving. Thus the map ν:P → Π1 × Π2 defined by

ν(p) :=
(

ν1(p), ν2(p)
)

(p ∈ P ) is a continuous order-preserving map into an ordered

space with the discrete topology. For q ∈ Im ν, let Vq := ν−1(q). By Lemma 3,

Π := {Vq}q∈Im ν ∈ EP .

Clearly Π ≤ Π1, Π2.

Lemma 4.5. Let P ∈ P.

(1) If U ∈ D(P ) is non-empty and proper, then {U, P \ U} ∈ EP .

(2) If p, q ∈ P and p 6≤ q, then there exists Π ∈ EP such that νΠ(p) 6≤ νΠ(q).

Proof. (1) This part is obvious.

(2) There exists U ∈ D(P ) such that p ∈ U and q ∈ P \U . Let Π := {U, P \U}.

Proposition 4.6 ([28], Theorem). Let P ∈ P. Then

(

(Π)Π∈EP
, (νΠ1,Π2 : Π1 → Π2)Π1,Π2∈EP

Π1≤Π2

)

is an inverse system in P with inverse limit

(

P, (νΠ:P → Π)Π∈EP

)

.

Proof. By Proposition 4, EP is filtered, and it is clear from Lemma 2 that

T :=
(

(Π)Π∈EP
, (νΠ1,Π2 : Π1 → Π2)Π1,Π2∈EP

Π1≤Π2

)

is an inverse system in P. By Lemma 1,

(

P, (νΠ:P → Π)Π∈EP

)

.

is compatible with T .
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Assume
(

Q, (gΠ:Q → Π)Π∈EP

)

is also compatible with T . We prove that, for each q ∈ Q,

⋂

Π∈EP

ν−1
Π

(

gΠ(q)
)

is a singleton.

By Lemma 2 (2), CΠ := ν−1
Π

(

gΠ(q)
)

is clopen and non-empty for all Π ∈ EP .

If Π1,. . . ,Πn ∈ EP for some n ≥ 0, there exists Π ∈ EP such that Π ≤ Π1, . . . ,Πn.

As CΠ 6= ∅, there exists p ∈ P such that νΠ(p) = gΠ(q). By Lemma 1, for

i = 1,. . . ,n,

νΠi
(p) = (νΠ,Πi

◦ νΠ)(p) = (νΠ,Πi
◦ gΠ)(q) = gΠi

(q)

by compatibility, so

p ∈
n
⋂

i=1

CΠi
.

By compactness,
⋂

Π∈EP

CΠ 6= ∅.

If p, p′ ∈ P and p 6= p′, by Lemma 5 (2) there exists Π ∈ EP such that

νΠ(p) 6= νΠ(p′). Hence
⋂

Π∈EP

CΠ

contains a unique element g(q).

We prove that g:Q → P is continuous and order-preserving. Let U ∈ D(P )

be non-empty and proper. Let p ∈ U . Then Π := {U, P \ U} ∈ EP by Lemma 5

(1) and g−1
Π

(

νΠ(p)
)

= g−1
Π ({U}) ∈ D(Q). We have

νΠ ◦ g = gΠ =⇒ g−1 ◦ ν−1
Π = g−1

Π

=⇒ g−1 ◦ ν−1
Π ◦ νΠ = g−1

Π ◦ νΠ

=⇒ g−1(U) = (g−1 ◦ ν−1
Π ◦ νΠ)(p) = (g−1

Π ◦ νΠ)(p) ∈ D(Q).

Hence g:Q → P is order-preserving and continuous. Uniqueness is clear.
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Proposition 4.7. Let P ∈ P. Then
(

(Π)Π∈EP
, (νΠ1,Π2

: Π1 → Π2)Π1,Π2∈EP
Π1≤Π2

)

is an inverse system in P with inverse limit
(

P , (νΠ:P → Π)Π∈EP

)

.

Proof. Using Proposition 6, we see that

T :=
(

(Π)Π∈EP
, (νΠ1,Π2

: Π1 → Π2)Π1,Π2∈EP
Π1≤Π2

)

is an inverse system in P with which
(

P , (νΠ:P → Π)Π∈EP

)

.

is compatible.

Assume
(

Q, (ḡΠ:Q → Π)Π∈EP

)

is also compatible with T . For each Π ∈ EP , let gΠ:Q → Π be the continuous

order-preserving function gΠ(q) := ḡΠ(q) (q ∈ Q). Then
(

Q, (gΠ:Q → Π)Π∈EP

)

is compatible with the inverse system
(

(Π)Π∈EP
, (νΠ1,Π2 : Π1 → Π2)Π1,Π2∈EP

Π1≤Π2

)

(see Proposition 6). Hence there is a unique continuous order-preserving function

g:Q → P such that νΠ ◦ g = gΠ for all Π ∈ EP .

For all q, r ∈ Q, q ≤ r implies g(q) = g(r). For otherwise by Lemma 5 there

exists Π ∈ EP such that νΠ

(

g(q)
)

6≥ νΠ

(

g(r)
)

so that gΠ(q) 6≥ gΠ(r) and hence

ḡΠ(q) 6≥ ḡΠ(r). As Π is an antichain, we have ḡΠ(q) 6≤ ḡΠ(r), so that ḡΠ is not

order-preserving, a contradiction.

Hence the map ḡ:Q → P defined by ḡ(q) := g(q) for all q ∈ Q is continuous

and order-preserving. Moreover for all Π ∈ EP , νΠ ◦ ḡ = ḡΠ.

Assume h̄:Q → P is a continuous order-preserving map such that νΠ ◦ h̄ = ḡΠ

(Π ∈ EP ). Define h:Q → P by h(q) := h̄(q) (q ∈ Q). Then h is continuous and

order-preserving, and νΠ ◦ h = gΠ (Π ∈ EP ); hence h = g, so that h̄ = ḡ.
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Lemma 4.8. Let F be a filtered poset,
(

P, (gi:P → Pi)i∈F

)

an inverse limit in P

of the inverse system
(

(Pi)i∈F , (gij :Pi → Pj) i,j∈F

i≤j

)

.

Then:

(1) i ≤ j implies Im D(gj) ⊆ Im D(gi) (i, j ∈ F );

(2) { Im D(gi) | i ∈ F } is directed;

(3) D(P ) =
⋃

i∈F

Im D(gi).

Proof. (1) Let i, j ∈ F be such that i ≤ j. Then gij ◦ gi = gj implies

D(gi) ◦ D(gij) = D(gj),

so that Im D(gj) ⊆ Im D(gi).

(2) This statement follows from (1) and the fact F is filtered.

(3) By Priestley duality,

S :=

(

(

D(Pi)
)

i∈F
,
(

D(gij):D(Pj) → D(Pi)
)

i,j∈F

i≤j

)

is a filtered system in D with filtered limit

(

D(P ),
(

D(gi):D(Pi) → D(P )
)

i∈F

)

.

Let D := { Im D(gi) | i ∈ F }. Then M :=
⋃

D is a {0, 1}-sublattice of

L := D(P ) by (2). For i ∈ F , let f ′
i :D(Pi) → M be the {0, 1}-homomorphism

defined by f ′
i(a) := [D(gi)](a)

(

a ∈ D(Pi)
)

. For i, j ∈ F such that i ≤ j and

a ∈ D(Pj),

[f ′
i ◦ D(gij)](a) = [D(gi) ◦ D(gij)](a) = [D(gij ◦ gi)](a)

= [D(gj)](a) = f ′
j(a)

so that
(

M, (f ′
i :D(Pi) → M)i∈F

)

is compatible with S. Hence there exists a

unique {0, 1}-homomorphism f :L → M such that f ◦ D(gi) = f ′
i (i ∈ F ). For all

i ∈ F and a ∈ D(Pi), [f ◦ D(gi)](a) = f ′
i(a) = [D(gi)](a).

Let h:L → L be the {0, 1}-homomorphism defined by h(a) := f(a) (a ∈ L).

As h ◦ D(gi) = D(gi) (i ∈ F ), we see that h = idL, so that Im f = L and hence

M = L.
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Lemma 4.9. Let F and K be filtered posets. Let
(

P, (gi:P → Pi)i∈F

)

be an inverse

limit in P of the inverse system
(

(Pi)i∈F , (gij :Pi → Pj) i,j∈F

i≤j

)

.

Let
(

P, (hk:P → Qk)k∈K

)

be an inverse limit in P of the inverse system

(

(Qk)k∈K , (hkm:Qk → Qm) k,m∈K

k≤m

)

.

Assume that gi:P → Pi and hk:P → Qk are surjective and that Pi and Qk are

finite antichains (i ∈ F , k ∈ K).

Then for all k ∈ K, there exists i ∈ F for which the following holds: for all

pi ∈ Pi, there exists qk ∈ Qk such that g−1
i (pi) ⊆ h−1

k (qk).

Proof. Let k ∈ K. By Lemma 8 (3), Im D(hk) ⊆
⋃

i∈F

Im D(gi). Hence by Lemma

8 (2) there exists i ∈ F such that ImD(hk) ⊆ Im D(gi).

As Im D(hk) is a {0, 1}-sublattice of Im D(gi),

a ≤ 1D(P ) =
∨

{ b ∈ D(P ) | b is an atom of Im D(hk) }

for every atom a of Im D(gi), so there exists an atom b ∈ Im D(hk) such that a ≤ b.

That is, for every pi ∈ Pi, there exists qk ∈ Qk such that g−1
i (pi) ⊆ h−1

k (qk).

The next result is easily seen to be true.

Lemma 4.10. Let P , Q ∈ P, M ∈ Lat ∪ Slat. Let ν:P → Q be a continuous

order-preserving map. Define µ:MQ → MP by µ(f) := f ◦ ν for all f ∈ MQ.

Then:

(1) µ is a morphism;

(2) µ is injective if ν is surjective.

Lemma 2 (2) and (3) and Lemma 10 yield the following.

Lemma 4.11. Let P ∈ P, M ∈ Lat ∪ Slat.

(1) For every Π ∈ EP , µM
Π :MΠ → MP is an injective morphism;

(2) For every Π, Π0 ∈ EP such that Π ≤ Π0,

µM
Π,Π0

:MΠ0 → MΠ

is an injective morphism.
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Lemma 4.12. Let P ∈ P, M ∈ Lat ∪ Slat.

(1) For Π ∈ EP , µM
Π,Π = id(MΠ).

(2) For Π1, Π2, Π3 ∈ EP such that Π1 ≤ Π2 ≤ Π3,

µM
Π1,Π2

◦ µM
Π2,Π3

= µM
Π1,Π3

.

(3) For Π1, Π2 ∈ EP such that Π1 ≤ Π2,

µM
Π1

◦ µM
Π1,Π2

= µM
Π2

.

Proof. (1) This part is obvious.

(2) Let f ∈ MΠ3 . Then

(µM
Π1,Π2

◦ µM
Π2,Π3

)(f) = f ◦ νΠ2,Π3 ◦ νΠ1,Π2

= f ◦ νΠ1,Π3
= µM

Π1,Π3
(f).

(3) Let f ∈ MΠ2 . Then

(µM
Π1

◦ µM
Π1,Π2

)(f) = f ◦ νΠ1,Π2 ◦ νΠ1

= f ◦ νΠ2
= µM

Π2
(f)

by Lemma 1.

Lemma 4.13. Let F be a filtered poset. Let

S :=
(

(Ci)i∈F , (fij :Cj → Ci) i,j∈F

i≤j

)

be a filtered system in Lat ∪ Slat with which
(

C, (fi:Ci → C)i∈F

)

is compatible.

Assume:

(1) C =
⋃

i∈F

Im fi;

(2) for all i ∈ F , fi is injective.

Then
(

C, (fi:Ci → C)i∈F

)

is a filtered limit of S.
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Proof. Assume
(

C ′, (f ′
i :Ci → C ′)i∈F

)

is compatible with S. Define

f :C → C ′

as follows: if c ∈ C and c = fi(ci) for some i ∈ F and ci ∈ Ci, let f(c) := f ′
i(ci) ∈

C ′.

The map is well-defined. For if c = fj(cj) = fk(ck) for some j, k ∈ F , cj ∈ Cj ,

ck ∈ Ck, there exists i ∈ F such that i ≤ j, k. Hence

c = (fi ◦ fij)(cj) = (fi ◦ fik)(ck),

so that fij(cj) = fik(ck). Now (f ′
i ◦ fij)(cj) = f ′

j(cj) and (f ′
i ◦ fik)(ck) = f ′

k(ck).

If c, d ∈ C, then there exist j, k ∈ F such that c = fj(cj) and d = fk(ck)

for some cj ∈ Cj and ck ∈ Ck. There exists i ∈ F such that i ≤ j, k, and

c = (fi ◦ fij)(cj), d = (fi ◦ fik)(ck). Thus c ∨ d = fi

(

fij(cj) ∨ fik(ck)
)

, so

f(c ∨ d) = f ′
i

(

fij(cj) ∨ fik(ck)
)

= (f ′
i ◦ fij)(cj) ∨ (f ′

i ◦ fik)(ck)

= f ′
j(cj) ∨ f ′

k(ck) = f(c) ∨ f(d).

(If f ∈ Lat, then it preserves meet as well.) Hence f is a morphism. Uniqueness

is clear.

Cf. (2) below with [18], Theorem V.4.1.

Proposition 4.14. Let P ∈ P, M ∈ Lat ∪ Slat. Then:

(1) MP =
⋃

Π∈EP

Im µM
Π ;

(2)
(

MP , (µM
Π :MΠ → MP )Π∈EP

)

is a filtered limit of the filtered system

(

(MΠ)Π∈EP
, (µM

Π1,Π2
:MΠ2 → MΠ1)Π1,Π2∈EP

Π1≤Π2

)

;

(3) for Π1, Π2 ∈ EP , Π1 ≤ Π2 implies

Im µM
Π2

⊆ Im µM
Π1

.
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Proof. (1) Let f ∈ MP . By Lemma 3, there exist Π ∈ EP and an order-preserving

map g: Π → M such that f = g ◦ νΠ = µM
Π (g).

(2) By Proposition 4, EP is filtered. By Lemma 12,

S :=
(

(MΠ)Π∈EP
, (µM

Π1,Π2
:MΠ2 → MΠ1)Π1,Π2∈EP

Π1≤Π2

)

is a filtered system with which

(

MP , (µM
Π :MΠ → MP )Π∈EP

)

is compatible. By (1) and Lemmas 11 and 13, it is a filtered limit of S.

(3) This part follows from (2).

Proposition 4.15. Let P ∈ P, M ∈ Lat ∪ Slat. Then:

(1) MP =
⋃

Π∈EP

Im µM

Π
;

(2)
(

MP , (µM

Π
:MΠ → MP )Π∈EP

)

is a filtered limit of the filtered system

(

(MΠ)Π∈EP
, (µM

Π1,Π2
:MΠ2 → MΠ1)Π1,Π2∈EP

Π1≤Π2

)

;

(3) for Π1, Π2 ∈ EP , Π1 ≤ Π2 implies

Im µM

Π2
⊆ Im µM

Π1
.

Proof. (1) Let f ∈ MP . By Lemma 3, there exist Π0 ∈ E
P

and a map g ∈ MΠ0

such that

f = g ◦ νΠ0 .

By Propositions 6 and 7 and Lemma 9, there exists Π ∈ EP such that Π ≤ Π0. By

Lemma 1,

f = g ◦ νΠ0 = g ◦ νΠ,Π0
◦ νΠ ∈ Im µM

Π
.

(2) By Proposition 14,

S :=
(

(MΠ)Π∈EP
, (µM

Π1,Π2
:MΠ2 → MΠ1)Π1,Π2∈EP

Π1≤Π2

)

is a filtered system with which

(

MP , (µM

Π
:MΠ → MP )Π∈EP

)
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is compatible.

By (1) and Lemmas 11 and 13, it is a filtered limit of S.

(3) This part follows from (2).

5. Compact congruences of Priestley powers

In this section we prove that, for L ∈ Lat and P ∈ P, Comp(LP ) ∼=
(Comp L)P (Theorem 10). We use a suggestion from [23], pp. 98–100 about

obtaining the semilattice of compact congruences of a limit of lattices Li as a limit

of the semilattices Comp Li.

In [23], p. 98 and [11], §3, two prescriptions are given for functors from Lat

to Slat given by L 7→ Comp L (L ∈ Lat). We show that these two prescriptions

yield the same functor (Lemma 3).

Our first lemma is a consequence of [19], Theorem 1.20. The second is a

corollary, but we use an easy proof suggested by Dr. P. M. Neumann.

Lemma 5.1. Let L ∈ Lat, X ⊆ L × L. Define An(X) (n ≥ 0) by induction:

A0(X) := X ∪ { (a, b) | (b, a) ∈ X } ∪ { (a, a) | a ∈ L };

An+1(X) := An(X) ∪ Qn(X) ∪ Tn(X)

where

Qn(X) := { (a1 ∨ a2, b1 ∨ b2), (a1 ∧ a2, b1 ∧ b2) | (ai, bi) ∈ An(X) (i = 1, 2) },

Tn(X) := { (a, c) | (a, b), (b, c) ∈ An(X) for some b ∈ L }.

Then ϑL(X) =
⋃

n≥0

An(X).

Lemma 5.2. Let L, M ∈ Lat, X ⊆ L × L. Let f :L → M be a homomorphism.

Then

(f × f)[ϑL(X)] ⊆ ϑM
(

(f × f)[X]
)

.

Proof. Let ρ := ϑM
(

(f × f)[X]
)

, and let ς := (f × f)−1(ρ). Since f is a

homomorphism, ς ∈ ConL. Clearly X ⊆ ς, so ϑL(X) ⊆ ς. Hence

(f × f)[ϑL(X)] ⊆ ϑM
(

(f × f)[X]
)

.
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Lemma 5.3. Let L, M ∈ Lat, and let f :L → M be a homomorphism. Let n ≥ 0,

ai, bi ∈ L (i = 1,. . . , n). Then

[Comp(f)]
(

n
∨

i=1

ϑL(ai, bi)
)

=

n
∨

i=1

ϑM
(

f(ai), f(bi)
)

.

Hence Comp is a functor from Lat to Slat.

Proof. Clearly
n
∨

i=1

ϑM
(

f(ai), f(bi)
)

⊆ [Comp(f)]
( n
∨

i=1

ϑL(ai, bi)
)

. By Lemma 2,

(f × f)[

n
∨

i=1

ϑL(ai, bi)] ⊆
n
∨

i=1

ϑM
(

f(ai), f(bi)
)

,

so that

[Comp(f)]
(

n
∨

i=1

ϑL(ai, bi)
)

⊆
n
∨

i=1

ϑM
(

f(ai), f(bi)
)

.

Thus

[Comp(f)]
(

n
∨

i=1

ϑL(ai, bi)
)

=

n
∨

i=1

ϑM
(

f(ai), f(bi)
)

.

In [9], Theorem 2.1, it is proven that, for L ∈ Lat, P ∈ P
fin, Con(LP ) ∼=

(ConL)n, where n is the cardinality of P . (Also see a similar result for certain

lattice-ordered algebras, [8], Theorem 3.5.) The proof is by induction on n. We

present essentially the same proof below, only we have made it direct.

First we state some lemmas.

Lemma 5.4. Let L ∈ Lat, P ∈ P
fin, a, b ∈ L, p ∈ P . Then

mP (a, b, p) ∈ LP

Lemma 5.5. Let A, B be algebraic lattices. Then κ(A × B) = κ(A) × κ(B). For

n ≥ 0, κ(An) = κ(A)n.

Lemma 5.6. Let L ∈ Lat, P ∈ P
fin, p ∈ P , a, b ∈ L, f0, g0 ∈ LP , θ ∈ Con(LP ).

Assume f0(p) = a, g0(p) = b, and (f0, g0) ∈ θ ∨ χp. Then

(f, g) ∈ θ ∨ χp

for all f , g ∈ LP such that f(p) = a, g(p) = b.
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Proposition 5.7. Let L ∈ Lat, P ∈ P
fin. Then:

(1) for θ ∈ Con(LP ) and p ∈ P ,

[Γ′
P (θ)](p) = { (a, b) ∈ L × L | (f, g) ∈ θ ∨ χp

for some f , g ∈ LP such that f(p) = a, g(p) = b };

(2) Γ′
P and ∆′

P are mutually-inverse order-isomorphisms;

(3) ΓP maps Comp(LP ) onto (Comp L)P .

Proof. For a ∈ L, let ā ∈ LP denote the constant map with value a.

By Lemma 6, Γ′ := Γ′
P is well-defined, as is ∆′ := ∆′

P ; (1) also holds. Both

Γ′ and ∆′ are order-preserving.

Let θ ∈ Con(LP ). Let f , g ∈ LP . Then

(f, g) ∈ (∆′ ◦ Γ′)(θ) ⇐⇒
(

f(p), g(p)
)

∈ [Γ′(θ)](p) for all p ∈ P

⇐⇒ (f, g) ∈ θ ∨ χp for all p ∈ P

⇐⇒ (f, g) ∈
∧

p∈P

(θ ∨ χp)

⇐⇒ (f, g) ∈ θ ∨
∧

p∈P

χp

⇐⇒ (f, g) ∈ θ.

Thus (∆′ ◦ Γ′)(θ) = θ, so that ∆′ ◦ Γ′ = idCon(LP ).

Let F ∈ (ConL)P , a, b ∈ L, p0 ∈ P . First assume (a, b) ∈ F (p0). Then for

all p ∈ P ,
(

[mP (a, b, p0)](p), [mP (b, a, p0)](p)
)

∈ F (p), so that

(

mP (a, b, p0), mP (b, a, p0)
)

∈ ∆′(F )

and hence

(a, b) ∈ [(Γ′ ◦ ∆′)(F )](p0).

Therefore F ≤ (Γ′ ◦ ∆′)(F ).

Now assume (a, b) ∈ [(Γ′ ◦ ∆′)(F )](p0). Then

(f, g) ∈ ∆′(F ) ∨ χp0

for all f , g ∈ LP such that f(p0) = a, g(p0) = b. Hence

(ā, b̄) ∈ ∆′(F ) ∨ χp0 .
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Thus for some n ≥ 1, there exist f1,. . . ,fn ∈ LP such that ā = f1, b̄ = fn, and for

1 ≤ i ≤ n,

(fi, fi+1) ∈

{

∆′(F ) if i odd,

χp0
if i even.

Therefore (a, b) ∈ F (p0). Hence (Γ′ ◦∆′)(F ) ≤ F , so that (Γ′ ◦∆′)(F ) = F . We see

that Γ′ ◦ ∆′ = id
(Con L)P . Thus Γ′ and ∆′ are inverse order-isomorphisms, which is

(2).

Statement (3) follows from (2) and Lemma 5.

Lemma 5.8. Let L ∈ Lat, P , Q ∈ P
fin. Let ν:P → Q be order-preserving. Let

ν̄:P → Q be defined by ν̄(p) := ν(p) for all p ∈ P . Define µ:LQ → LP by

µ(f) := f ◦ ν (f ∈ LQ).

Define µ̄: (CompL)Q → (Comp L)P by

µ̄(F ) := F ◦ ν̄ (F ∈ (Comp L)Q).

Then:

(1)

ΓP ◦ Comp(µ) ◦ ∆Q: (CompL)Q → (Comp L)P

is a {0}-∨-homomorphism and equals µ̄;

(2) if ν is surjective, then Comp µ is injective.

Proof. By Lemma 4.10, µ and µ̄ are Lat- and Slat-morphisms, respectively, so

Comp(µ): Comp(LQ) → Comp(LP )

is defined. By Proposition 7, ΓP ◦ Comp(µ) ◦ ∆Q is an Slat-morphism. Fix a0,

b0 ∈ L, q0 ∈ Q. To prove (1), it suffices to show

(

ΓP ◦ Comp(µ) ◦ ∆Q

)

(F ) = µ̄(F )

for F ∈ (Comp L)Q defined by

F (q) =

{

ϑL(a0, b0) if q = q0,

0Con L if q 6= q0.

Thus for f , g ∈ LQ, (f, g) ∈ ∆Q(F ) if and only if
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(1)
(

f(q0), g(q0)
)

∈ ϑL(a0, b0) and

(2) f(q) = g(q) for all q ∈ Q \ {q0}.

Let

η := { (h, k) ∈ LP × LP |
(

h(p), k(p)
)

∈ ϑL(a0, b0) for all p ∈ ν−1(q0)

and h(p) = k(p) for all p ∈ P \ ν−1(q0) }.

Then η ∈ Con(LP ) by Proposition 7, and (µ × µ)[∆Q(F )] ⊆ η.

Assume θ ∈ Con(LP ) and (µ × µ)[∆Q(F )] ⊆ θ. Assume (a, b) ∈ ϑL(a0, b0).

Then
(

mQ(a, b, q0), mQ(b, a, q0)
)

∈ ∆Q(F ); therefore

(µ × µ)
(

mQ(a, b, q0), mQ(b, a, q0)
)

∈ θ,

and so
(

mQ(a, b, q0) ◦ ν, mQ(b, a, q0) ◦ ν
)

∈ θ, thus (a, b) ∈ [Γ′
P (θ)](p) for all p ∈

ν−1(q0). Hence

ϑL(a0, b0) ⊆ [Γ′
P (θ)](p)

for all p ∈ ν−1(q0). If (h, k) ∈ η then

(

h(p), k(p)
)

∈ [Γ′
P (θ)](p)

for all p ∈ P , so (h, k) ∈ θ. Hence η ⊆ θ. We have shown that

η = (Compµ)
(

∆Q(F )
)

.

Define G ∈ (Comp L)P as follows: for all p ∈ P ,

G(p) :=

{

ϑL(a0, b0) if p ∈ ν−1(q0),

0Con L else.

It is clear that ∆P (G) = η. Moreover G = µ̄(F ). Thus (1) holds.

Statement (2) follows from (1) and Lemma 4.10 (2).

In [23], p.98 it is stated that Lat-embeddings map to Slat-embeddings under

Comp. One may construct a counterexample by considering the five-element non-

distributive modular lattice. The statement does hold for the embeddings with

which we are concerned, however.
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Lemma 5.9. Let L ∈ Lat, P ∈ P. For all Π ∈ EP , Comp µL
Π is injective.

Proof. Let θ(1), θ(2) ∈ Comp(LΠ) be such that

(Comp µL
Π)(θ(1)) = (CompµL

Π)(θ(2)).

For some n ≥ 0,

θ(r) =

n
∨

i=1

ϑLΠ

(f
(r)
i , g

(r)
i )

for some f
(r)
i , g

(r)
i ∈ LΠ (i = 1,. . . ,n and r = 1, 2). By Lemma 3,

(Comp µL
Π)(θ(r)) =

n
∨

i=1

ϑLP
(

µL
Π(f

(r)
i ), µL

Π(g
(r)
i )
)

(r = 1, 2).

By Lemma 1, there exists a finite subset S ⊆ LP containing µL
Π(f

(r)
i ), µL

Π(g
(r)
i )

(i = 1,. . . ,n and r = 1, 2) such that if K is a sublattice of LP containing S, then

n
∨

i=1

ϑK
(

µL
Π(f

(1)
i ), µL

Π(g
(1)
i )
)

=

n
∨

i=1

ϑK
(

µL
Π(f

(2)
i ), µL

Π(g
(2)
i )
)

.

As S is finite, by Propositions 4.4 and 4.14 there exists Π′ ∈ EP such that Π′ ≤ Π

and S ⊆ Im µL
Π′ . As µL

Π = µL
Π′ ◦ µL

Π′,Π and µL
Π′ is injective [Lemmas 4.11 (1) and

4.12 (3)],

n
∨

i=1

ϑLΠ′(

µL
Π′,Π(f

(1)
i ), µL

Π′,Π(g
(1)
i )
)

=

n
∨

i=1

ϑLΠ′(

µL
Π′,Π(f

(2)
i ), µL

Π′,Π(g
(2)
i )
)

.

Hence (Comp µL
Π′,Π)(θ(1)) = (CompµL

Π′,Π)(θ(2)). By Lemma 8, Comp µL
Π′,Π is in-

jective, so θ(1) = θ(2).

The following proof utilizes an idea from [23], pp. 98–100. The theorem,

proved independently, appears in [15], Theorem 4.

Theorem 5.10. Let L ∈ Lat, P ∈ P. Then Comp(LP ) ∼= (Comp L)P .
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Proof. By Proposition 4.14 (2),

(

LP , (µL
Π:LΠ → LP )Π∈EP

)

is a filtered limit in Lat of the filtered system

(

(LΠ)Π∈EP
, (µL

Π1,Π2
:LΠ2 → LΠ1)Π1,Π2∈EP

Π1≤Π2

)

.

Hence

(

(

Comp(LΠ)
)

Π∈EP

,
(

Comp µL
Π1,Π2

: Comp(LΠ2) → Comp(LΠ1)
)

Π1,Π2∈EP
Π1≤Π2

)

is a filtered system in Slat. By Lemma 8 (1), for Π1, Π2 ∈ EP such that Π1 ≤ Π2,

ΓΠ1 ◦ Comp(µL
Π1,Π2

) ◦ ∆Π2 = µComp L

Π1,Π2
: (CompL)Π2 → (Comp L)Π1 .

By Proposition 4.15,

(

(

(Comp L)Π
)

Π∈EP

,
(

µComp L

Π1,Π2
: (CompL)Π2 → (Comp L)Π1

)

Π1,Π2∈EP
Π1≤Π2

)

is a filtered system in Slat with filtered limit

(

(Comp L)P , (µComp L

Π
: (CompL)Π → (Comp L)P )Π∈EP

)

.

For each Π ∈ EP , let f ′
Π := Comp(µL

Π) ◦ ∆Π: (CompL)Π → Comp(LP ). For

Π1, Π2 ∈ EP such that Π1 ≤ Π2,

f ′
Π1

◦ µComp L

Π1,Π2
= Comp(µL

Π1
) ◦ ∆Π1 ◦ ΓΠ1 ◦ Comp(µL

Π1,Π2
) ◦ ∆Π2

= Comp(µL
Π1

) ◦ Comp(µL
Π1,Π2

) ◦ ∆Π2

= Comp(µL
Π1

◦ µL
Π1,Π2

) ◦ ∆Π2

= Comp(µL
Π2

) ◦ ∆Π2

= f ′
Π2

by Lemma 4.12 (3). Hence there exists a unique Slat-morphism

F : (CompL)P → Comp(LP )
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such that

F ◦ µComp L

Π
= Comp(µL

Π) ◦ ∆Π

for all Π ∈ EP . By Lemma 4.11, µComp L

Π
is injective for all Π ∈ EP . If f1,

f2 ∈ (Comp L)P and F (f1) = F (f2), then by Proposition 4.15 there exist Π ∈ EP

and g1, g2 ∈ (Comp L)Π such that

fi = µComp L

Π
(gi) (i = 1, 2).

Hence
(

Comp(µL
Π) ◦ ∆Π

)

(g1) =
(

Comp(µL
Π) ◦ ∆Π

)

(g2). By Proposition 7 and

Lemma 9, g1 = g2, so that f1 = f2. Therefore F is injective.

Now assume θ ∈ Comp(LP ). Then for some n ≥ 0, there exist f1,. . . ,fn,

g1,. . . ,gn ∈ LP such that

θ =

n
∨

i=1

ϑLP

(fi, gi).

By Proposition 4.14, there exists Π ∈ EP such that fi, gi ∈ Im µL
Π (i = 1,. . . , n).

Let hi, ki ∈ LΠ be such that fi = µL
Π(hi), gi = µL

Π(ki) (i = 1,. . . , n). Then

n
∨

i=1

ϑLΠ

(hi, ki) ∈ Comp(LΠ)

and by Lemma 3

(Comp µL
Π)

( n
∨

i=1

ϑLΠ

(hi, ki)

)

=

n
∨

i=1

ϑLP

(fi, gi) = θ

so that F is surjective. Hence F is an isomorphism.

6. The congruence lattice of a Priestley power of a lattice

In this section we determine the structure of the congruence lattice of a Pri-

estley power of a lattice in terms of the lattice and the Priestley space (Theorem

7 and Corollaries 8, 10, and 11). We derive as corollaries the known results that,

when the lattice or the space is finite, the problem of §1 has a positive solution

(Corollaries 12 and 13).

In §5 we determined the structure of the distributive semilattice of compact

congruences of a Priestley power of a lattice. To go from this semilattice to the

congruence lattice, we use Stone duality.
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Lemma 6.1. Every trivially ordered Priestley space is a Stone space.

Proof. Consider a trivially ordered Priestley space. It is homeomorphic to P (B)

for some Boolean algebra B. This space has a basis consisting of the sets

{ F ∈ P (B) | a ∈ F } (a ∈ B).

The map

F 7→ B \ F [F ∈ P (B)]

is a bijection from P (B) to S(B), which has a basis consisting of the sets

{ I ∈ Bσ | I prime and a /∈ I } (a ∈ B),

so that the map is a homeomorphism.

Lemma 6.2 ([29], Lemma 6). The product of sober spaces is sober.

Lemma 6.3. Let X and Y be Stone spaces. Then X × Y is a Stone space with

basis { U × V | U ∈ CO(X), V ∈ CO(Y ) } ⊆ CO(X × Y ).

Proof. Obviously X × Y is T0 and has basis

{ U × V | U ∈ CO(X), V ∈ CO(Y ) } ⊆ CO(X × Y ).

By Lemma 2, it is sober.

Lemma 6.4. Let X and Y be Stone spaces and J a set. For all j ∈ J , let Sj ∈

CO(X) and Tj ∈ CO(Y ). Let R :=
⋃

j∈J

(Sj × Tj) ∈ O(X × Y ). Then:

(1) for all y ∈ Y ,
⋃

{ U ∈ CO(X) | U × {y} ⊆ R } =
⋃

{ Sj | j ∈ J and y ∈ Tj };

(2) for all W ∈ CO(X),
{

y ∈ Y
∣

∣

∣
W ⊆

⋃

{

U ∈ CO(X)
∣

∣

∣
U × {y} ⊆ R

}

}

∈ O(Y );

(3) for all y0 ∈ Y ,
⋂

{ Tj | j ∈ J and y0 ∈ Tj } ∩
⋂

{ Y \ Tj | j ∈ J and y0 /∈ Tj }

is a subset of the set of all y ∈ Y such that
⋃

{

U1 ∈ CO(X)
∣

∣

∣
U1 × {y0} ⊆ R

}

=
⋃

{

U2 ∈ CO(X)
∣

∣

∣
U2 × {y} ⊆ R

}

.
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Proof. (1) Fix y ∈ Y . Let U ∈ CO(X) be such that U × {y} ⊆ R. Then for all

u ∈ U there exists ju ∈ J such that

(u, y) ∈ Sju
× Tju

.

Hence u ∈ {Sj | j ∈ J and y ∈ Tj }.

Now assume j ∈ J , s ∈ Sj , and y ∈ Tj . Then Sj ∈ CO(X) is such that

Sj × {y} ⊆ R.

(2) Let W ∈ CO(X) and y0 ∈ Y be such that

W ⊆
⋃

{ U ∈ CO(X) | U × {y0} ⊆ R }.

By (1), for some n ≥ 0 there exist j1,. . . ,jn ∈ J such that

W ⊆
n
⋃

k=1

Sjk
and y0 ∈

n
⋂

k=1

Tjk
=: T.

For any t ∈ T ,

W ⊆
n
⋃

k=1

Sjk
⊆
⋃

{

U ∈ CO(X)
∣

∣

∣
U × {t} ⊆ R

}

.

As T ∈ O(Y ), (2) follows.

(3) Assume

y ∈
⋂

{ Tj | j ∈ J and y0 ∈ Tj } ∩
⋂

{ Y \ Tj | j ∈ J and y0 /∈ Tj }.

By (1),
⋃

{

U1 ∈ CO(X)
∣

∣

∣
U1 × {y0} ⊆ R

}

equals

⋃

{ Sj | j ∈ J and y0 ∈ Tj } =
⋃

{ Sj | j ∈ J and y ∈ Tj }

=
⋃

{

U2 ∈ CO(X)
∣

∣

∣
U2 × {y} ⊆ R

}

.

The next lemma is simple.
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Lemma 6.5. Let X be a Stone space. Then:

(1) O(X) is an algebraic lattice;

(2) CO(X) = κO(X).

After proving the next proposition, the author noted that the first part follows

from [12], Theorem II.4.10.

Proposition 6.6. Let X be a Stone space and Y a trivially ordered Priestley space.

Define a map

Ψ:O(X × Y ) → O(X)Y
Σ

as follows: for all R ∈ O(X × Y ) and y ∈ Y , let

[Ψ(R)](y) :=
⋃

{ U ∈ CO(X) | U × {y} ⊆ R }.

Then Ψ is an order-isomorphism. The restriction of Ψ to CO(X × Y ) maps

onto CO(X)Y .

Proof. By Lemmas 1 and 3, every R ∈ O(X × Y ) equals
⋃

j∈J

(Sj × Tj) for some

set J and Sj ∈ CO(X), Tj ∈ CO(Y ) (j ∈ J). (If R ∈ CO(X × Y ), we may assume

J is finite, so that, by Lemma 4 (1) and (3), Ψ(R) ∈ CO(X)Y .) By Lemma 4 (2),

Ψ is well-defined. It is clearly order-preserving.

Assume R, S ∈ O(X ×Y ) and Ψ(R) ≤ Ψ(S). Assume (x, y) ∈ R. Then there

exists U ∈ CO(X) such that x ∈ U and U × {y} ⊆ R. Hence

U ⊆ [Ψ(R)](y) ⊆ [Ψ(S)](y).

Therefore there exists U0 ∈ CO(X) such that x ∈ U0 and U0 × {y} ⊆ S. Hence

(x, y) ∈ S. Therefore R ⊆ S and Ψ is an order-embedding.

Now assume f ∈ O(X)Y
Σ . Suppose U ∈ CO(X), y ∈ Y , and U ⊆ f(y). Then

there exists TU,y ∈ CO(Y ) such that y ∈ TU,y and U ⊆ f(t) for all t ∈ TU,y. [If

f ∈ CO(X)Y , let TU,y := f−1
(

f(y)
)

.]

Let

R :=
⋃

y∈Y

⋃

U∈CO(X)
U⊆f(y)

(U × TU,y) ∈ O(X × Y ).

[If f ∈ CO(X)Y and TU,y = f−1
(

f(y)
) (

U ∈ CO(X), y ∈ Y such that U ⊆ f(y)
)

,

this set equals
⋃

y∈Y

(

f(y) × f−1
(

f(y)
))

, which may be reduced to a finite union
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since Im f is finite, so belongs to CO(X × Y ).] By Lemma 4 (1), for all y ∈ Y ,

[Ψ(R)](y0) =
⋃

{ U ∈ CO(X) | U ⊆ f(y)

for some y ∈ Y and y0 ∈ TU,y }

which equals f(y0). Hence Ψ(R) = f , so Ψ is surjective. Therefore Ψ is an order-

isomorphism.

Theorem 6.7. Let L ∈ Lat, P ∈ P. Then Con(LP ) ∼= (ConL)P
Σ .

Proof. As Comp L ∈ DSlat, there exists a Stone space X such that

CO(X) ∼= Comp L.

By Proposition 6, (CompL)P ∼= CO(X × P ), where X × P is a Stone space by

Lemmas 1 and 3. By Theorem 5.10, [(Comp L)P ]σ ∼= Con(LP ). By Lemma 5,

CO(X × P )σ ∼= O(X × P ). By Proposition 6, O(X × P ) ∼= O(X)P
Σ . By Lemma 5

again, O(X)P
Σ

∼= [(CompL)σ]PΣ
∼= (ConL)P

Σ . Hence Con(LP ) ∼= (ConL)P
Σ .

From Corollary 3.7, we get the following.

Corollary 6.8. Let L ∈ Lat, M ∈ D. Then

Con(LP (M)) ∼= Slat

(

(

Comp L,∨, 0Con L

)

,
(

(MBool)
σ,∩, MBool

)

)

.

Lemma 6.9. Let M ∈ D. Then (MBool)
σ ∼= ConM .

Proof. Because P (MBool) is trivially ordered, we have

(MBool)
σ ∼= U

(

P (MBool)
)

∼= O
(

P (MBool)
)

∼= O
(

P (M)
)

∼= ConM.

Corollary 6.10. Let L ∈ Lat, M ∈ D. Then

Con(LP (M)) ∼= Slat

(

(Comp L,∨, 0Con L), (ConM, ∩, 1Con M )
)

.

The next corollary follows from Corollary 3.7.
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Corollary 6.11. Let L ∈ Lat, M ∈ D. Then

Con(LP (M)) ∼= (ConL)
P (Con M)
Λ .

Corollary 6.12 ([9], Theorem 2.1). Let L be a lattice and P a finite poset with n

elements. Then Con(LP ) ∼= (ConL)n.

Proof. As P is a discrete space, (Con L)P
Σ = (ConL)P . The result follows from

Theorem 7.

Corollary 6.13 ([26], Theorem). Let L be a finite lattice, M ∈ D. Then

Con(LP (M)) ∼= (ConL)P (Con M).

Proof. As Comp L is finite,

Slat

(

(Comp L,∨, 0Con L), (ConM, ∩, 1Con M )
)

= Slat
fin
(

(Comp L,∨, 0Con L), (ConM, ∩, 1Con M )
)

.

By Corollary 10, the left-hand side is isomorphic to Con(LP (M)). By Corollary 3.7,

the right-hand side is isomorphic to (ConL)P (Con M).

7. A counterexample

In this section we show that the answer to Schmidt’s question (§1) is in general

negative. As stated in §1, Grätzer and Schmidt have determined exactly when it

has a positive solution ([15], Theorem 3); our results were obtained independently.

Lemma 7.1. Let S be a chain with 0. Let T ∈ D. Then

Slat

(

(S, ∨, 0S), (T σ,∩, T )
)

= { f ∈ (T σ)S∂

| f(0S) = T }.

Proof. Let f ∈ Slat

(

(S, ∨, 0S), (T σ,∩, T )
)

. Assume s1, s2 ∈ S and s1 ≤ s2.

Then f(s2) = f(s1 ∨ s2) = f(s1) ∩ f(s2), so that f(s2) ⊆ f(s1).

Now assume f ∈ (T σ)S∂

. Let s1, s2 ∈ S. Without loss of generality s1 ≤ s2.

Hence f(s1 ∨ s2) = f(s2). As f(s2) ⊆ f(s1), we have f(s1) ∩ f(s2) = f(s2). Thus

f(s1 ∨ s2) = f(s1) ∩ f(s2).
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Corollary 7.2. Let C be a chain. Let S := 1 ⊕ (C∂), T ∈ D. Then:

(1) Slat

(

(S, ∨, 0S), (T σ,∩, T )
)

∼= (T σ)C ;

(2) Slat
fin
(

(S, ∨, 0S), (T σ,∩, T )
)

∼= { f ∈ (T σ)C | Im f finite }.

Lemma 7.3. The poset { f ∈ [P(N)σ]N | Im f finite } is not a complete lattice.

Proof. For all n0 ∈ N, define the map

fn0 : N → P(N)σ

as follows. For all n ∈ N,

fn0
(n) :=

{
{

∅, {n0}
}

if n ≥ n0,

{∅} if n < n0.

Then for all n0 ∈ N,

fn0
∈ P := { f ∈ [P(N)σ]N | Im f finite }.

For n ∈ N,

(

∨

[P(N)σ ]N
{ fn0 | n0 ∈ N }

)

(n) = P({1, . . . , n}).

Suppose for a contradiction that

g :=
∨

P
{ fn0 | n0 ∈ N }

exists. Then there exists k0 ∈ N such that k0 ≤ n implies g(k0) = g(n) (n ∈ N).

For all n ∈ N, P({1, . . . , n}) ⊆ g(n); if n ≥ k0, then P({1, . . . , n}) ⊆ g(k0).

Define h: N → P(N)σ as follows: for all n ∈ N,

h(n) :=

{

P({1, . . . , n}) if n ≤ k0,

g(k0) if k0 < n.

Then h ∈ P and for all n0 ∈ N,

fn0
≤ h.

Hence g ≤ h; but g(k0) is infinite and h(k0) is finite, a contradiction.
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Proposition 7.4. There exist L ∈ Lat and M ∈ D such that

Con(LP (M)) 6∼= (ConL)P (Con M).

Proof. Let M := P(N). Note that 1⊕ (N∂) = κ
(

1⊕ (N∂)
)

. It is well-known that

there exists L ∈ Lat such that ConL ∼= 1⊕(N∂) (see, for example, [27], Theorem).

Hence Comp L ∼= 1 ⊕ (N∂).

By Lemma 6.9,

(ConL)P (Con M) ∼= (ConL)P (Mσ).

By Corollary 3.7,

(ConL)P (Mσ) ∼= Slat
fin
(

(Comp L,∨, 0Con L), (Mσ,∩, M)
)

∼= Slat
fin

(

(

1 ⊕ (N∂),∨, 0
)

,
(

P(N)σ,∩,P(N)
)

)

.

By Corollary 2 (2) we have

(ConL)P (Con M) ∼= { f ∈ [P(N)σ]N | Im f finite },

which is not a complete lattice by Lemma 3, so cannot be isomorphic to a congru-

ence lattice.
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