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Abstract. A distributive lattice L with 0 is finitary if every interval is finite. A function
f:Ng — Ny is a cover function for L if every element with n lower covers has f(n) upper
covers. All non-decreasing cover functions have been characterized by the author ([2]),
settling a 1975 conjecture of Richard P. Stanley. In this paper, all finitary distributive
lattices with cover functions are characterized. A problem in Stanley’s Enumerative Com-
binatorics is thus solved.
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A. Preliminaries

1. The Problem

In this paper, we continue the investigations begun by Stanley in [3], in which he
studies certain distributive lattices related to the Fibonacci numbers.

Many of these lattices have the following property: whenever two elements
have the same number (n) of immediate predecessors, then they have the same
number (f(n)) of immediate successors. Hence one may define a cover function
f Ny — Ny, where Ny ={0,1,2,...}.

Problem (Stanley, [4], [6], p. 157). “Can all cover functions f(n) be explicitly
characterized?”

We answer this question by characterizing all cover functions and their cor-
responding lattices (Theorem 11.1).

In the rest of Part A we shall define our terms (§2) and state the problem
precisely (§3). Then we shall present background material more directly related to
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the problem and give some basic examples. We repeat much of the introductory
material from [2].

In Part B we shall solve the problem by doing a case-by-case analysis of all
possible cover functions. (Because of our previous work, we need only consider
non-non-decreasing cover functions.)

2. General Definitions, Notation, and Basic Theory

For basic facts and notation, see [1] or [6].

Let P be a poset. We denote the least element by 0p or 0 if it exists.

Let p,q € P. We say pis a lower cover of g and q is an upper cover of p (denoted
p <gq) if p < q and there is no r € P such that p < r < q. We denote the set of
lower covers of p by LC(p). An element is (join-) irreducible if it has a unique
lower cover. Let Irr(P) denote the poset of irreducibles of P.

A subset Q C P is a down-set (or order ideal) if p € P, q € O, and p<g imply
p € 0 (Fig. 1).

The family of finite down-sets of P is denoted (/(P). For R C P,

lR={peP|p<rforsome r € R};

if R is a singleton {r}, we simply write | r, and | r denotes (| r)\{r}. (Note that
| R is a down-set.)

Let P and Q be posets. The disjoint sum of P and O, P + Q, is the poset with
underlying set P U Q such that p and ¢ are incomparable for all p € P and g € Q
(Fig. 2). The ordinal sum of P and Q, P & Q, is the poset on P U Q such that p < ¢
for all p € P and g € Q (Fig. 3).

If P has a greatest element and Q a least element, the coalesced ordinal sum,
PBEQ, is the poset obtained by identifying these two elements (Fig. 4).

The direct product P x Q is the set of pairs (p,q) ordered coordinate-wise:
(p,q)<(,q) if p<p and g<q'(p,p € P,q,q' € Q) — see Figs. 5a and b.

f Q ={a,b,d} =ld
d e 1rr(P) = {e}
) . LC(f) = {d, e}

Fig. 1. A down-set Q of P

Fig. 2. The disjoint sum
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Fig. 3. The ordinal sum

AN K

Fig. 4. The coalesced ordinal sum

An antichain is a poset in which distinct elements are incomparable; a chain is a
totally ordered set. For n € Ny, the n-element antichain is denoted # and the
n-element chain is denoted n (Fig. 6).

A lattice L is finitary if it has a 0 and | « is finite for all a € L. It is well known
that a finitary distributive lattice may be identified with O¢(P) where P = IrrL ([6],
3.4.3).

Fig. 5. Direct products
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1

Fig. 6. Chains and an antichain

If we do simply say that L = O¢(P), then I < J in L if and only if 7 = J\{;} for
a maximal element j € J (now viewed as a subposet of P).

For posets P and O, Op(P+ Q)= Oi(P) x O(Q), and, if P is finite,
Os(P @ Q) = O¢(P)BOQ). In particular, O¢(1 ® Q) = 1@ Of(Q). (See Figs. 7 and
8 and [1], Chapter 5.)

Let Y denote Young’s lattice (a lattice of great interest to combinatorialists). It
is the poset of sequences (ai,as,...) € N§ with finitely many non-zero coordi-
nates such that a;>a, > ---. We will identify Young’s lattice with O¢(Ngy x Np)
(Fig. 9).

3. Definition of Cover Functions and Known Results

Let L be a finitary distributive lattice. A function f : Ny — Ny is a cover function
for L if every element with (exactly) n lower covers has (exactly) f(n) upper covers.

| N

P Q O¢(P) 0:(Q)

Fig. 7. The lattice of down-sets

S

+ o—o
o
o

Ne

OH2+1) 23 x 22 0(2) x O(1)

Fig. 8. The lattice of down-sets
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Fig. 9. An element of Young’s lattice

(The definition comes from [3], §3 and [6], p. 157; cf. the definition of differential
posets in [5].)
The first three examples come from [3].

Example 3.1. For k € N, the constant function f(n) =k (n € Ny) is a cover
function for N’g (Figs. 10a and b).
[We note that f(n) could take any value for n > k.]

Example 3.2. For k € N, the function f(n) =k +n (n € Ny) is a cover function
for Y*.

Example 3.3. For k € Ny, any function f : Ng — Ng with f(n) =k —n (0<n<k)
is a cover function for 2* (Fig. 11).

In fact, we have:

Proposition 3.4 ([3], §3, Proposition 2). If L is a finite distributive lattice with a
cover function, then L =2 2" for some r € N. O

We have constructed the following examples:

Example 3.5. For k=2, the function

k ifn=rk,
* otherwise,

k—n 1f0<n<k,
f(n)={

where n € Ny, is a cover function for B glz’f (Fig. 12).
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No

Fig. 10. Cover functions

Example 3.6. For k=2, the function

1 ifn=0,
f(n) = {k if 1<n<k,
* otherwise,

where n € Ny, is a cover function for 1@ N'g (Fig. 13).

Example 3.7. The poset L = Y\{0y} is still a finitary distributive lattice [with
Irr(L) = (Np x No)\{(0,0)}], and it has cover function

]2 ifn=0,
f(n){n+1 ifn>1,

where n € Nj.

Example 3.8. Another “sporadic” example is the lattice L = 2> @ N, which has
cover function
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fO)=3 f(1)=2
f@=1 fB3)=0
23

Fig. 11. A Cover function

f0=3 f1)=2
=1 f@)=3

Fig. 12. A Cover function

Fig. 13. Cover functions

2 ifn=0,
f(n):{l if 1<n<2,
* otherwise,

where n € Ny (Fig. 14).

481
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fO=2 f)=1 f2)=1

2?9 N
Fig. 14. A cover function

Even though we have seen that a given lattice L may have more than one cover
function, any two lattices with the same cover function must be isomorphic:

Proposition 3.9 ([3], §3; [6], pp.157, 180). There is at most one finitary distributive
lattice with a given cover function (up to isomorphism). O

In [3], Stanley conjectures that the only non-decreasing cover functions are the
constant functions and functions of the form f(n) = n + k for some constant .
(He proves that no cover function has the form f(n) = an + k if |a| >2.) We settle
the conjecture in [2].

In Part B we prove the following (Theorem 11.1):

Theorem. If L is a finitary distributive lattice with a cover function, then one of the
following holds:

(1) L= Nt (k=1);

Q) L=Y* (k=1

B) L1 NE (k=2);
(4) L=Y\{0y};

(5) L = 2% (k>0);

(6) L=~ =2 (k=>2);
(7) L=2>@N.

B. Solution to the Problem

In Part B, L will denote a finitary distributive lattice with cover function
f :Nog— Np. Let P =Irr(L) and let x1, . . ., x,, be its set of minimal elements. (It is
clear that m = £(0).)

We identify L with O¢(P).

4. Useful Lemmas

We will use the following key lemmas repeatedly; they mostly follow from the
characterization of the cover relation in (¢(P) given in §2.
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Lemma 4.1. Let n € Ny. An element I € O¢(P) has (exactly) n lower covers in L if
and only if I has n maximal elements in P. O

Lemma 4.2. If I =| A where A C P is an n-element antichain, then there are

(exactly) f(n) elements p € P\I such that LC(p) C I. O
Lemma 4.3. Letq € P;letA={pec P\ | q|LC(p) C jq},andletB ={peP\|gq]|
LC(p) €l q}-

Then:
(1) 4 C B
(2) for all ¥ € P, r € B\A if and only if v € Irr(P) and q <r,
(3) the upper covers of | q in L are exactly the sets | q U {b} for b € B. O

Lemma 4.4. If £(0)>=2, then f(0) — 1<f(1)<f(0) + 1.
Proof. This result is Lemma 4.7 of [2]. O

Proposition 4.5. If 1(0) < f (1), then one of the following holds:

(1) L= Nt (k=1);
Q) LYk (k=1);

B) L1 NS (k=2);
(4) L=Y\{0y};

5 L=1.

Proof. A careful look at the statements proved in [2] yields the result. O

Lemma 4.6. For all n € Ny, f(n)=1(0) —n.

Proof. The statement is trivial if n = 0 or n>=£(0).
Suppose 1<n < f(0) and let 7 = {xj,...,x,}. Then 7 has, in L, at least the
f(0) — n upper covers I U {x;}(n <i<f(0)). O

In the rest of §4 and in §§5-10, we shall assume that f(0) =2 and f(1) = f(0) — 1.

Corollary 4.7. No x; has an irreducible upper cover (1<i<f(0)).
Proof. Use Lemma 4.3. O

Corollary 4.8. Let C = {x3,...,x;0} and let D= {pec P\{x;,x2}|LC(p) C
{x1,x2}}.
Then:
() CCDh;
(2) for all r € P, r € D\C if and only if LC(r) = {x1,x2};
(3) the upper covers of {x1,x2} in L are exactly the sets {x|,x»,d} ford € D. [
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Lemma 4.9. The inequality f(0) —2<f(2)<f(0) holds.

Proof. The first inequality is Lemma 4.6. Suppose for a contradiction that
f(2)=f(0)+ 1. Since {x;,xo} has, in L, at least the f(0) —2 upper covers
{x1,x%2,x;} (3<i<f(0)), by Corollary 4.8 there are at least 3 elements z € P such
that LC(z) = {x1,x2}, u, v, and w (Fig. 15).

So | u has more than /(1) = f(0) — | upper covers in L, namely, | uU | v,
luU | w,and | u U{x;} (3<i<f(0)), a contradiction. O

5.f(2) = f(0)

Lemma 5.1. Let C and D be as in Corollary 4.8. Then:
(1) D\C has exactly two elements, y12 and y},;

(2) for g =y1» in Lemma 4.3, 4 =B = CU {y},}.

Proof. (1) By Corollary 4.8(3), D\C has exactly f(2) — (f(0) — 2) = 2 elements.
(2) By Lemma 4.3(3), B has exactly f(1)=/(0)—1 elements; but
CU{y,} €4 has f(0) — 1 elements, so 4 =B = CU{y},}. O

Corollary 5.2. We have (0) = 2.

Proof. Assume for a contradiction that f(0) >3 (Fig. 16).
Then | y1p U{x3} has more than f(2) = f(0) upper covers in L, namely,

LynU Ly, u{xs), LynUlys, LyinU s, LynU s, LynUL Y, and
Ly U{x3,x;} (4<i<f(0)), a contradiction. O

T D) I3

Fig. 15. An impossible scenario (f(0) =3, /(1) =2, f(2) > 3)

Y2 Y13 Y2 Y23l Y

T T2 T3

Fig. 16. An impossible scenario (f(0) =3, f(1) =2, f(2) =3)
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6. f(2) = f(0)-1
Lemma 6.1. Let C and D be as in Corollary 4.8.
Then:

(1) D\C has exactly one element, yi»;
(2) y12 has a unique irreducible upper cover, yi,.

Proof. (1) By Corollary 4.8(3), D\C has exactly
f2)=(7(0) =2) = £(0) =1 = (f(0) —2) = 1
element.

(2) In L, | y» has at least the f(0)—2=f(1)—1 upper covers
Ly U{x;} (3<i<f(0)), so there is exactly one more element yj, € P\ | y12 such
that LC(y},) C | y12. We have ruled out LC(3{,) = 0, and Corollary 4.7 rules out
LC(4,) = {x1} or {x2}; (1) and Corollary 4.8(2) rule out LC(y},) = {x1,x2}.
Hence LC()},) = {y12}. O

Corollary 6.2. We have f(0) = 2.

Proof. Assume for a contradiction that f(0)>3 and consider the elements of
Lemma 6.1 (Fig. 17).

Then | y;2 U {x3} has more than f(2) = f(0) — | upper covers in L, namely,
Ly U{xs,x} (4<i<f(0), | yi2U s, | yi2U | »3, and | yj, U{x3}, a con-

tradiction. O

Corollary 6.3. The following hold:

(HP~2@N;
(2) L =28 Ny;

e rm={ 120

if 1<n<?2

(Figs. 14 and 18).

/ / /
Y12 Y13 Y23

Y12 | Y13 | Y23

Ty T2 I3

Fig. 17. An impossible scenario (f(0) =3, /(1) =2, f(2) =2)
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Y12

Y12

T o

Fig. 18. The poset 2@ N

Y4 Y3 Y2 Y1

7/
T T2

Fig. 19. An impossible scenario (f(0) =4, f(1) =3, f(2) =2, n=3, f(n) > f(0) —n)

Proof. By Corollary 6.2, f(0) =2, f(1)=1, and f(2) = 1. Assume that, for
some n>1, we have x|, x, <y <y < --- <y" where y(*) is the unique irre-
ducible upper cover of y\) in P for 0<i < n.

If g = y in Lemma 4.3, then 4 = () and B has 1 element, so y") has a unique
irreducible upper cover y"+! in P.

Let QO = {x1,x2,,),...}. Assume for a contradiction that P\Q # . Let
p € P\O be minimal. By Corollary 4.7, Corollary 4.8(2) and Lemma 6.1,
LC(p) = {y'™} for some n>0. Thus p € Irr(P) so p is the unique irreducible upper
cover of y, ie., p = y"*1) € O, a contradiction. O

7. f(2)=f(0)=2

Lemma 7.1. For 0<n < £(0), f(n) = f(0) —n.

Proof. The statement is trivial for 0<n<<2. Assume that 3<n < f(0) and that
f(k)=71(0) —k for 0<k < n < f(0). By Lemma 4.6, f(n) > f(0) — n. Assume for
a contradiction that f(n) > f(0) — n.

Then, by the induction hypothesis, there exists for 1<i<n+ 1 an element
¥i € P such that LC(y;) = {x1, ..., %1 }\{x:} (Fig. 19).

Hence | y; U {x;} has more than f(2) = f(0) — 2 upper covers in L, namely,
InUlyn@2<i<n+1)and |y U{x,x;} (n+2<i<f(0)), a contradiction. []

Corollary 7.2. There is no element in P whose set of lower covers is a non-empty
proper subset of {x1,...,x7q)} O
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Corollary 7.3. The inequality f(f(0))<f(0) holds.

Proof. Assume for a contradiction that f(f(0))>/(0)+ 1. Then by Corol-
lary 7.2, there are at least f (0)+1 elements yeP such that

LC(y) = {x1,.. ., xp0) }, Yio- -, Y70 So |y has more than f(1)=f(0)—1
upper covers in L, namely, | yjU | y, (2<z <f(0) + 1), a contradiction. O

Corollary 7.4. We have f(f(0)) € {0,1,£(0)}.

Proof. Assume not, for a contradiction. Let k = f(f(0)). By Corollary 7.3,
2<k < f(0). Let y1, ...,y be the set of all y € P such that LC(y) = {x1,...,x70)}
(Fig. 20). (We are using Corollary 7.2.)

Letting ¢g=y in Lemma4.3, we get 4={»m,...,0%}, so » has

Sy —(k—=1)=1(0)—k 1rredu01ble upper covers in P, yi,... ,ylwo)_k). Simi-

larly, we have 4, ... ,yy (F1g 21).
Now | yi U---U | y has more than f(k) = f(0) — k (by Lemma 7.1) upper
covers in L, namely, | 3" U] »U---U|y and | U [ U]l »nU---U|n

(I1<i<f(0) — k), a contradiction. O

8. f(2) = f10)=2: f(f10)) =
Proposition 8.1. The following hold.

(I)P%/TO?;
(2) L=20;

(3) f(n) =f(0) —nif 0<n<f(0).

Fig. 20. An impossible scenario (f(0) =4, f(1) =3, f(2) =2, k=f(4) =3)

v Y Y3

Fig. 21. An impossible scenario (f(0) =4, f(1) =3, f(2) =2, k=f(4) =3)
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Proof. Assume for a contradiction that P\{xi,...,xs)} # (). Choose a minimal
element p in this set; by Corollary 7.2, LC(p) = {x1,...,Xs0)} so f(f(0)) #0, a
contradiction. The rest follows from Lemma 7.1. O

9. 1(2) = f(0)=2; f(f(0)) = 1
Lemma 9.1. We have f(0) = 2.

Proof. Assume for a contradiction that f(0)>3. There exists a unique element
y € P\{x1,...,xp0} such that LC(y) C {xi,...,xs0)}; by Corollary 7.2,
LC(y) = {Xh ce ,Xf(())}.

Letting ¢ = y in Lemma 4.3, we get 4 = () so y has f(1) = f(0) — 1 irreducible
upper covers in P, zi, ...,z (Fig. 22).

Now let g=z; in Lemma 4.3; then A= {z,...,z¢0-1}, s0 z has
S(1) = [(f(0) = 1) = 1] = 1 irreducible upper cover in P, Z. Similarly we have
Zyy. .. ’Zlf(O)—l (Fig. 23).

As f(0) =122, | z1U---U | z-1 has more than f(f(0)—1)=1 (by
Lemma 7.1) upper cover in L, namely, |ZjU |z U---U/|zs0-; and
lz1U ] 25U | z3U---U | zf0)—1, a contradiction. O

10. f(2) = f(0)=20r f(0) = 2, f(f(0)) = f(0)

Lemma 10.1. Assume that, for some n>1, there is a down-set Q = ®"_ Y in P
where, for 1<i<n, Y\ = {yf’)7 ... ,yj%)} =~ £(0) and, for 1<i <n, YUV is the
(

a
set of all y € P\ | Y such that LC(y) C | YY. (See Fig. 24)

1 T2 T3 T4
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Then Y () =Ly € P\ | YW |LC(y) €| Y} has exactly f(0) elements and
LC(y) = for all y € Y+D) (Hence Y( Y'is an antichain.)
Proof. There ex1st exactly f f(0) elements %/ € P\ L such that
LC(y) C | Y™ ) We clalm that L") 75 (Z) Obvious if

n=1; 0therw1se use the assumptlon on Y ()

Suppose for a contradiction that y1 géLC(y]"“)) Then y1 72 yl"+ Hence
Ly2 U ly 0) has more than f(f(0) — 1) =1 (by Lemma 7.1) upper cover in
L, namely, the sets 1 Y™ and | y (D) g | y2 U yﬁé), a contradiction. [

Corollary 10.2. The following hold (Fig. 25):

(1) P = o, f(0);

(2)Lgaaoc 2f<°>

o /(0) if 0 f(0)
- —n 1H0sn< s

fln) = { 70)  ifn=f(0).

Fig. 25. The situation of Corollary 10.2 (f(0) =2, f(1) =1, f(2)=2)



490 J.D. Farley

Proof. Build, by induction, a down-set Q isomorphic to @?21Y<i> using
Lemma 10.1, where for i>1, Y(*D is the f(0)-element antichain of all elements
y € P\ | Y such that LC(y) C | Y.
Assume for a contradiction that P\Q # (); choose p € P\Q minimal. Then
LC(p) €| Y for some i>1 but p € P\ | Y¥; hence p € Y'*1, a contradiction.
The last part is clear. O

11. The Characterization of Cover Functions

Theorem 11.1. Let L be a finitary distributive lattice with cover function
f:Nog — Ny. Then one of the following holds:

(1) for some k=1, L = Nk: and for all n € N,

k if 0<n<k,
f(n) = {* otherwise;

(2) for some k=1, L = Y*; and for all n € Ny, f(n) =n+k;
(3) for some k=2, L =1& N&: and for all n € N,
1 ifn=0,
f(m)y=<k ifl<n<k,
x otherwise;

(4) L =2 Y\{Oy}; and for all n € Ny,
2 ifn=0,
7= {

n+1 ifn=1;

(5) for some k=0, L= 2% and for all n € N,
k—n if0<n<k,
fn)=<¢0 ifn=k,
* otherwise;

(6) for some k=2, L =82 and for all n € N,
k—n 1f0<n <k,
fn)=<k if n =k,
* otherwise;

(7) L =22 @ N; and for all n € Ny,
2 ifn=0,
fn) =31 if 1<n<2,
x otherwise.

Moreover, the functions listed are cover functions for the corresponding finitary
distributive lattices.
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Proof. 1f f(0)<f(1), we get (1)~(5) by Proposition 4.5.

If £(0) =1 and f(1) =0, then L = 2 and we get (5).

Hence we may assume that f(0) >2 and, by Lemma 4.4, that £(1) = f(0) — 1.

If £(2) = £(0), then f(0) =2 by Corollary 5.2, so f(f(0)) = f(0). By Corol-
lary 10.2, we have (6).

If £(2) = f(0) — 1, then, by Proposition 6.3, we have (7).

By Lemma 4.9, we may assume that f(2) = f(0) — 2.

If £(f(0)) = 0, we have (5) by Proposition 8.1.

If £(f(0)) = 1, we have f(0) = 2 by Lemma 9.1, so f(2) = f(0) — 1.

By Corollary 7.4, we may assume that £(f(0)) = £(0). By Corollary 10.2, we
have (6). O

Thus the problem in Stanley’s Enumerative Combinatorics is solved.
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