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Maximal Sublattices of Finite Distributive
Lattices. III: A Conjecture from the 1984
Banff Conference on Graphs and Order
Jonathan David Farley

Abstract. Let L be a finite distributive lattice. Let Sub0(L) be the lattice

{S | S is a sublattice of L} ∪ {∅}

and let �∗[Sub0(L)] be the length of the shortest maximal chain in Sub0(L). It is proved that if K and
L are non-trivial finite distributive lattices, then

�∗[Sub0(K × L)] = �∗[Sub0(K)] + �∗[Sub0(L)].

A conjecture from the 1984 Banff Conference on Graphs and Order is thus proved.

1 Motivation

Let L be a finite lattice. Let Sub0(L) denote the lattice

{S | S is a sublattice of L} ∪ {∅}

ordered by inclusion. (Recall that a lattice or sublattice is by definition non-empty;
if |L| = 1, we say L is trivial.) Let �∗[Sub0(L)] be the length of the shortest maximal
chain in this lattice. Figures 1 through 4 illustrate maximal chains in Sub0(L) where
L equals 3, 2 × 2, and 3 × 3. (For n ≥ 0, n is the n-element chain.) We exhibit
two maximal chains of Sub0(32) of different lengths, one of length 9, one of length 6.
How do we know there are not maximal chains that are shorter still?

In [3, Theorem 2(i)], Chen, Koh, and Lee proved the following.

Theorem 1.1 Let m ≥ 1; let n1, . . . , nm ≥ 2. Then

�∗[Sub0(n1 × · · · × nm)] =

m∑

i=1

ni .

(Hence the maximal chain of Figure 4 is the shortest possible.)
The papers [1, 6, 7] deal with maximal sublattices of finite distributive lattices.
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Figure 1: A shortest maximal chain in Sub0(3); it has length 3.
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Figure 2: A shortest maximal chain in Sub0(22); it has length 4.
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Figure 3: A maximal chain in Sub0(32); it has length 9.
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Figure 4: Is this a shortest maximal chain in Sub0(32)?
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The following was posed in [3, Problem 1].

Problem 1.2 Let K and L be (non-trivial) finite distributive lattices. Is it always true
that �∗[Sub0(K × L)] = �∗[Sub0(K)] + �∗[Sub0(L)]?

Chen, Koh, and Lee [3] add, “The equality holds if both L and K are products of
chains by Theorem 2(i), and up till now we are still unable to find a counterexample.”

At the 1984 Banff Conference on Graphs and Order, Koh stated the above as a
conjecture [8, p. 554], adding, “It would be nice to prove it if either L or K is a
chain.” (Note that in neither [3] nor [8] was the word “non-trivial” inserted, though
it is clearly needed, as �∗[Sub0(1)] = 1 but K × 1 ∼

= K. Note also that even Fig-
ure 2 already shows that Problem 1.2 cannot be solved by naively “splicing” together
a maximal chain in Sub0(K) with a maximal chain in Sub0(L).)

We solve Problem 1.2 below (Theorem 3.3).

2 Notation and Basic Results

For notation and terminology not explained here, see [2, 4].
Let P be a poset. For p, q ∈ P such that p ≤ q, define

↓p := {r ∈ P | r ≤ p},
◦

↓p := (↓p) \ {p},

↑p := {r ∈ P | r ≥ p},
◦

↑p := (↑p) \ {p}.

We say p is a lower cover of q (and q is an upper cover of p), denoted p � q, if p < q
and ↑p ∩ ↓q = {p, q}. For k ≥ 0, let

Jk(P) := {r ∈ P | r has exactly k lower covers},

Mk(P) := {r ∈ P | r has exactly k upper covers}.

A subset Q of P is a down-set of P if ↓r ⊆ Q for all r ∈ Q. Let O(P) denote the
bounded distributive lattice of all down-sets of P.

Note that sometimes we will deal with two partial orderings at once, for instance,
P and L = O(P). Occasionally, when Q is a subset of a poset P, we will give Q the
partial ordering inherited from P and call Q a subposet of P; but sometimes Q will
have a different partial ordering. Poset notation relevant to one partial order in cases
where there may be confusion will be designated with a subscript, e.g., a ≤Q b or ↓Lx.
We view the partial order relation ≤ as a set of ordered pairs.

Let P and Q be finite posets whose underlying sets are disjoint. Let P + Q be the
poset whose underlying set is the disjoint union P � Q and such that for all r and s in
P � Q r ≤P+Q s if and only if either r, s ∈ P and r ≤P s, or else r, s ∈ Q and r ≤Q s.
That is, for all p ∈ P and q ∈ Q, p and q are incomparable (denoted p ‖ q). Note
that O(P + Q) ∼= O(P) × O(Q).

Now we come to the first new definition. Let P be a finite poset. A maximal
sublattice sequence for P of size k (where k ≥ 1) is a sequence of subsets of P (not
necessarily subposets)

(Pk, Pk−1, . . . , P2, P1)
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such that Pk = P, P1 = ∅, and, for 1 ≤ i < k, at least one of the following holds
(where, for 1 ≤ i ≤ k, we let ≤i denote the partial ordering of Pi).

(I) Pi+1 has a least element 0i+1 and Pi is the subposet Pi+1 \ {0i+1}. Let ci := 1.
(II) Pi+1 has a greatest element 1i+1 and Pi is the subposet Pi+1 \ {1i+1}. Let ci := 2.

(III) There exist x, y ∈ Pi+1 such that x ‖i+1 y,
◦

↓i+1 y ⊆
◦

↓i+1x, and
◦

↑i+1x ⊆
◦

↑i+1 y; Pi

has underlying set Pi+1 and ≤i=≤i+1 ∪{ (y, x) }. Let ci := 3.
(IV) There exist x ∈ M1(Pi+1) and y ∈ J1(Pi+1) such that x �i+1 y and Pi is the

subposet Pi+1 \ {x} or Pi+1 \ {y}. Call x and y the key elements and let ci = 4.

We call (ck−1, . . . , c1) the maximal sublattice coding of size k − 1 associated with the
maximal sublattice sequence.

The point of the above definition is as follows: Birkhoff ’s theorem says every finite
distributive lattice L is isomorphic to O(P) for some finite poset P, which must nec-
essarily be isomorphic to J1(L). Priestley duality is the dual equivalence between the
categories of bounded distributive lattices with {0, 1}-preserving homomorphisms
and Priestley spaces with continuous order-preserving maps. Hence we can describe
a maximal {0, 1}-sublattice (a maximal sublattice containing 0 and 1) M of a fi-
nite distributive lattice L by describing the relationship between P ∼

= J1(M) and
Q ∼

= J1(L). That relationship must take the form of (III) or (IV). (If M does not
contain 0L, we get (I); if M does not contain 1L, we get (II).)

Remark. The description of the “duals” of maximal {0, 1}-sublattices of finite dis-
tributive lattices ((III) and (IV) above) can be gleaned from [1, §3]. The authors do
not provide proofs, but state that “Hashimoto [5] was the first to observe that there
is a bijective correspondence between the critical pairs of P on one side . . . [and]
with the proper maximal sublattices of O(P)”. (The ordered pairs (y, x) in (III) or
(IV) satisfy the definition of criticality in [1].) We do not find this in [5], although
Hashimoto does prove the related theorem [5, Theorem 9.2]. Nevertheless, once one
knows what result to aim for, it is routine to prove that the above characterization of
maximal {0, 1}-sublattices is correct. One notes that, except for the beginning, the
proof of [7, Theorem 2] applies to any maximal {0, 1}-sublattice. (This proof itself
depends on [6, Theorem 2, Theorem 3], and a converse, which comes from [7, Theo-
rem 1] and the comments at the beginning of [7, §3].) One observes that the element
c in the statement of [7, Theorem 2], as the cover of a join-irreducible element of
a finite distributive lattice, belongs to J1(L) or J2(L). In the former case, M is type
(IV); in the latter, type (III).

Hence we get the following.

Lemma 2.1 Let L be a finite distributive lattice. Let P := J1(L). Then Sub0(L) has a
maximal chain of length k if and only if P has a maximal sublattice sequence of size k if
and only if P has a maximal sublattice coding of size k − 1.

If L is non-trivial and (Pk, . . . , P1) is a maximal sublattice sequence, then k ≥ 2 and
|P2| = 1.

Proof If L = Lk � Lk−1 � · · · � L1 � L0 = ∅ is a maximal chain in Sub0(L), then
L1 is trivial. If L is non-trivial, L2 must be 2.
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3 Proof of a Conjecture from the 1984 Banff Conference on Graphs
and Order

Proposition 3.1 Let P and Q be disjoint, non-empty, finite posets. Let K := O(P) and
let L := O(Q). Let k := �∗[Sub0(K)] and let l := �∗[Sub0(L)]; let j := �∗[Sub0(K ×
L)]. Then j ≥ k + l.

Proof Suppose for a contradiction that j < k+l. Let (R j , R j−1, . . . , R1) be a maximal
sublattice sequence for P + Q; let (e j−1, . . . , e1) be the associated maximal sublattice
coding and let ≤i be the partial order of Ri (1 ≤ i ≤ j). Let

k ′
= 1 +

∣∣{1 ≤ i ≤ j − 1 | ei = 1 or 2, and Ri+1 \ Ri ⊆ P}

∪ {1 ≤ i ≤ j − 1 | ei = 3, and ≤i \ ≤i+1⊆ P × P}

∪ {1 ≤ i ≤ j − 1 | ei = 4, and both key elements are in P}
∣∣ .

Let l ′ be the corresponding number for Q. Then k ′−1+l ′−1 ≤ j−1 ≤ k−1+l−1. If
k ′ ≥ k and l ′ ≥ l, then k ′−1+l ′−1 = j−1. So there would be no i ∈ { 1, . . . , j−1 }
such that ei = 3 and ≤i+1 \ ≤i⊆ (P×Q)∪(Q×P). But this is impossible since P and
Q are non-empty, while R1 = ∅ and for all p ∈ P and q ∈ Q, p ‖ q in R j = P + Q.
Thus, without loss of generality, k ′ < k.

For 1 ≤ i ≤ j, let Pi be the subposet Ri ∩ P of (Ri ,≤i). Except for k ′ − 1 values of
i ∈ {1, . . . , j − 1}, we have (Pi+1,≤i+1) = (Pi ,≤i) (without loss of generality in case
ei = 4). Let the posets corresponding to the exceptions be, in order,

(
(Pk ′ ,k ′), (Pk ′

−1,k ′
−1), . . . , (P1,1)

)
.

This is a maximal sublattice sequence for P of size k ′ < k, so, by Lemma 2.1,
�∗[Sub0(K)] < k, which is a contradiction.

Lemma 3.2 Let P be a non-empty finite poset. If, for some k ≥ 1, P has a maximal
sublattice coding of size k − 1, then P has a maximal sublattice coding (ck−1, . . . , c1)
where, for some a ∈ {1, . . . , k − 1},

ck−1, . . . , ca+1 ∈ {3, 4} and ca, . . . , c1 ∈ {1, 2}.

Moreover, if the latter’s associated maximal sublattice sequence is (Pk, . . . , P1), then
Pa+1, Pa, . . . , P1 are chains of size a, a − 1, . . . , 0, respectively.

Proof If (dk−1, . . . , d1) is a maximal sublattice coding and, for some

i ∈ {1, . . . , k − 2}, di+1 ∈ {1, 2}, di ∈ {3, 4},

then (dk−1, . . . , di+2, di , di+1, di−1, . . . , d1) is also a maximal sublattice coding. By
Lemma 2.1, we have k ≥ 2 and c1 ∈ {1, 2}.

Theorem 3.3 Let K and L be non-trivial finite distributive lattices. Then

�∗[Sub0(K × L)] = �∗[Sub0(K)] + �∗[Sub0(L)].
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Proof Let k := �∗[Sub0(K)] and l := �∗[Sub0(L)]. Let P := J1(K) and let Q :=
J1(L) (which we can assume to be disjoint). By Lemma 2.1 and Proposition 3.1, we
need only show that there is a maximal sublattice sequence for P + Q of size k + l.

Applying Lemma 3.2, let 1 ≤ a ≤ k − 1 be such that P has a maximal sublat-
tice coding (ck−1, . . . , c1) where ck−1, . . . , ca+1 ∈ {3, 4} and ca, . . . , c1 ∈ {1, 2}. Let
1 ≤ b ≤ l − 1 be such that Q has a maximal sublattice coding (dl−1, . . . , d1) where
dl−1, . . . , db+1 ∈ {3, 4} and db, . . . , d1 ∈ {1, 2}.

Now
(ck−1, . . . , ca+1, dl−1, . . . , db+1, 4, . . . , 4, 3, 1, 1),

where the 4’s displayed appear a− 1 + b− 1 times, is a maximal sublattice coding for
P + Q of size

[(k − 1) − (a + 1) + 1] + [(l − 1) − (b + 1) + 1] + (a − 1) + (b − 1) + 3

= k + l − a − b + a + b − 1 − 1 − 1 − 1 + 3

= k + l − 1.

By Lemma 2.1, we are done. (The associated maximal sublattice sequence
(Rk+l, . . . , R1) is such that, by the time the 4’s start, we have a disjoint sum of two
chains by Lemma 3.2; the 4’s reduce the poset to a two-element antichain; the 3 makes
it a two-element chain; and the final 1’s remove the elements of this chain.)

Thus we have proven the conjecture from the 1984 Banff Conference on Graphs
and Order.
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